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Abstract

The development of whole slide imaging techniques and online digital pathology platforms have accelerated the popularization
of telepathology for remote tumor diagnoses. During a diagnosis, the behavior information of the pathologist can be recorded by
the platform and then archived with the digital case. The browsing path of the pathologist on the WSI is one of the valuable
information in the digital database because the image content within the path is expected to be highly correlated with the diagnosis
report of the pathologist. In this paper, we proposed a novel approach for computer-assisted cancer diagnosis named session-based
histopathology image recommendation (SHIR) based on the browsing paths on WSIs. To achieve the SHIR, we developed a novel
diagnostic regions attention network (DRA-Net) to learn the pathology knowledge from the image content associated with the
browsing paths. The DRA-Net does not rely on the pixel-level or region-level annotations of pathologists. All the data for training
can be automatically collected by the digital pathology platform without interrupting the pathologists’ diagnoses. The proposed
approaches were evaluated on a gastric dataset containing 983 cases within 5 categories of gastric lesions. The quantitative and
qualitative assessments on the dataset have demonstrated the proposed SHIR framework with the novel DRA-Net is effective in
recommending diagnostically relevant cases for auxiliary diagnosis. The MRR and MAP for the recommendation are respectively
0.816 and 0.836 on the gastric dataset. The source code of the DRA-Net is available at https://github.com/zhengyushan/dpathnet.
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I. INTRODUCTION

With the development of whole slide imaging and digital pathology, the biopsy sections are well archived, and the frameworks
for histopathology whole slide image (WSI) analysis are widely developed [1], [2], [3], [4]. Computer-aided diagnosis (CAD)
methods based on histopathology WSIs and artificial intelligent algorithms, especially deep learning techniques [5], [6], [7],
have become popular in the last decade. There are two remarkable interests in recent studies on histopathological image analysis
(HIA). The one is to develop weak-supervision [8], [9], [10], semi-supervision [11] frameworks, etc., to relieve the annotation
workload of the pathologists [12]. Another one is to utilize the resource of large-scale digital pathology platform to improve
the information [13], [14], [15], [16] of CAD.

With the increasing application of the telepathology system, abundant diagnosed cases have been accumulated [17], [18],
[19]. The cases contain not only the WSIs but also valuable data, including the diagnosis report, meta information, user behavior
data, etc. These data are the potential to develop CAD applications that are both light-annotated and informative.

A notable record in the telepathology platform is the browsing path on the WSI during the diagnosis of the pathologist.
Theoretically, the pathologist should have reviewed the conclusive regions related to a specific disease before making the
diagnosis. Gecer et al. [20] has proven the regions the pathologist focus on during the diagnosis are highly correlated with the
diagnosis of the case. And this correlation stably exists within different experts although the browsing habits of the experts are
variant [21]. This characteristic motivated us to build a deep learning model to learn the relationship between image content
under the diagnosis path and the label of the WSI, and evaluate whether this level of supervision is sufficient to learn pathology
knowledge and build computer-assisted cancer diagnosis system.

In this paper, we propose a novel diagnostic regions attention network (DRA-Net) for histopathology image analysis.
Correspondingly, we developed a novel CAD approach named session-based histopathology image recommendation (SHIR)
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Fig. 1. The framework of the proposed method. (a) illustrates the flowchart of the model construction and database collection, where the ROIs in the diagnosis
path are first numbered, then encoded based on the proposed DRA-Net, and the code is used to index the case archived in the recommendation database. (b)
illustrates an application instance, where the diagnosis path is encoded using the trained model and then the relevant cases are recommended based on the
similarity measurement.

based on the DRA-Net. As shown in Figure 1, the SHIR is designed to monitor the pathologist’s browsing path on the WSI
during diagnosis and actively query the database to recommend diagnosed cases within a similar path and image content. These
cases then feedback to the pathologist to provide assistant information.

The contribution of this paper to this problem is three-fold.
1) We build a novel learning framework for histopathology image analysis based on the diagnosis paths of pathologists

on WSIs and propose a novel DRA-Net to learn pathology knowledge from the image content within the diagnosis paths.
The training of DRA-Net does not rely on the pixel-level or region-level annotations, for which the workload of manual
annotation can be relieved. Moreover, the browsing path can be automatically collected by the platform without interrupting
the pathologist’s diagnosis. It determines the network is adequate to develop automatic self-training CAD systems based on
digital pathology platforms.

2) We develop the session-based histopathology image recommendation (SHIR) application inspired by the concept of session-
based recommendation [22], [23]. In the domain of histopathological image analysis, the most related existing application to
the proposed SHIR is content-based histopathological image retrieval (CBHIR) [13], [24], [25]. CBHIR applications require
the pathologists manually selecting a region of interest (ROI) as the query instance and the retrieval does not consider the
regions the pathologists have already viewed. In comparison, the proposed SHIR summarizes the information of a WSI while
the pathologist is browsing the WSI, and continuously and actively recommends the relevant cases within similar image content
from the database. The application form is more informative and convenient than the CBHIR.

3) We have conducted comprehensive experiments to verify the proposed method and compared it with related methods [26],
[27], [28] on a large-scale gastric dataset containing 983 cases. The experimental results have demonstrated the supervision
of the diagnosis path on the WSI is sufficient to train a qualified model for gastric histopathology image recognition, and the
proposed SHIR is promising to develop systems for computer-aided cancer diagnosis.

A part of the paper has been presented in the conference MICCAI 2020 [29]. In this paper, we optimize the recommendation
network with the attention mechanism, presents new findings with extensive experimental results (including the performance for
the continuous recommendation, the real-time capability, the training efficiency, the usage of the RNN module, the application
for ROI retrieval, ablation study, etc.), provides the details about the methodology and data collection, and gives necessary
discussions.

The remainder of this paper is organized as follows. Section II reviews the related works. Section III introduces the
methodology of the proposed method. The experiment are presented in Section IV. Section V includes necessary discussions.
Section VI summarizes the contributions.

II. RELATED WORKS

In this section, we first review the latest development of CBHIR methods, then introduce the methods for session-based
recommendation.
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Fig. 2. The structure of the proposed Diagnostic Regions Attention Network (DRA-Net), where (a) is the GCN modules for ROI feature extraction, (b) is
the RNN where the GRU module is shared for the graph features gt, (c) is the self-attention module, (d) is the hashing module, and (e-h) are the detailed
network structure of these modules, and the notes are interpreted at the bottom of the figure.

A. Content-based histopathology image retrieval
In the last five years, an increasing number of studies focused on the efficiency and scalability of the histopathology image

retrieval system.
To improve the efficiency of retrieval, the Hash techniques are developed for databases consisting of massive histopathological

images. Typically, Zhang et al. [30] and Jiang et al. [31] introduced supervised hashing with kernels (KSH) into the CBHIR.
Then, Shi et al. [32] utilized a graph hashing model to learn the similarity relationship of histopathological images. More
recently, the end-to-end hashing networks are widely developed [14], [24], [25], [33], which have significantly improved the
overall performance of the retrieval. The efficiency is also crucial for the proposed SHIR framework. Therefore, in this paper,
we considered using the hashing technique to improve the speed of the SHIR framework.

Another research interest is the retrieval scalability involving the adaption of size and shape variances of query regions
and the strategy to indexing whole slide images. In the previous study, Ma et al. [34] proposed dividing the WSIs into sub-
regions following the sliding window paradigm and encoding the individual regions to establish the retrieval database. It was
a convenient strategy to index WSIs for sub-regions retrieval. However, the tissue appearance was ignored in the division of
WSIs. Zheng et al. [15] proposed segmenting a WSI into super-pixels and defining the super-pixels as retrieval instances.
Furthermore, The research [35] proposed merging the super-pixels into irregular regions based on selective search [36] to
achieve the indexing of WSIs. Meanwhile, the algorithms for measuring the similarity between irregular regions, or even
between WSIs were designed [37], [26]. Most recently, Zheng et al. [27] proposed to construct spatial graphs to represent
the sub-regions of the WSI and established an end-to-end network based on graph convolution networks (GCNs) to extract
the graph features and index the sub-regions. Chen et al. [38] proposed to represent the annotation regions by fusing patch-
level features and encoding the region representation by supervised hashing for retrieval. These studies have provided feasible
strategies to encode the screen regions within the diagnosis path, which is the basis of the proposed SHIR framework.

B. Session-based recomendation
Recommendation is an important task in online services (e.g., e-commerce, media streaming). The recommendation system

can trace the browsing history of a customer and feed the relevant items back to the customer for reference. Session-based
recommendation aims to predict the intention of the user based on the user’s current behaviors, rather than the historical
actions. As the browsing history is a type of sequential data, the Recurrent Neural Networks (RNNs) were thereby applied
in the recommendation task [39], [40], [41] and have proven important in the session-based systems [23]. Then, the attention
mechanism was widely used in the domain to merge the global and local features within the session [41], [22], for which the
recommendation performance was significantly improved. Recently, the graph neural networks (GNNs) were applied to the
session-based recommendation by regarding the click connections as a directed graph [23], [42], which have further improved
recommendation accuracy. In our study, we regarded the diagnosis on a WSI as a session and traced the screens within the
browsing paths for diagnostically relevant region recommendation.

III. METHOD

A. Overview
DRA-Net is the body in the recommendation framework, which is detailed in this section. As shown in Figure 2, the DRA-

Net consists of multiple GCN modules, an RNN module, and a self-attention module. The GCNs in the DRA-Net are used
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Fig. 3. The flowchart of ROI graph construction, where the patches in the tissue area are extracted with a sliding window and fed into a CNN to obtain the
patch features, meanwhile the 4-neighborhood adjacency matrix for these patches are extracted, and the graph is defined based on the patch features and the
adjacency matrix.

to extract structural feature for each screen region in a path, the RNN is applied to summarizing the features of the regions,
the self-attention module is used to merge the local patterns and the global representation, and finally, the hashing module
generates the binary code to indexing the path.

B. ROI feature extraction with GCN

The screen regions in the diagnosis path are referred as ROIs in this section. The ROIs usually contain blank (background)
areas that should be ignored in the feature extraction and the size of the ROIs varies to the magnification the pathologists
reviewed the slide. Thus, we propose constructing a spatial graph to represent the tissue area in the ROI and then extracting
the ROI feature using GCNs [43], [44], [45].

The flowchart of constructing the graph for an ROI is shown in Figure 3. First, the ROI is divided into patches using a sliding
window and the patches are fed into a CNN to extract patch features. Letting xk ∈ Rdf denote the CNN feature of the k-th
patch with df dimension, the features for the patches in the ROI are represented as a matrix X = [x1, ...,xnp ]

T ∈ Rnp×df ,
where np is the number of patches involving tissue area. Meanwhile, the 4-neighborhood adjacency of these patches are detected
and formulated as an adjacency matrix A ∈ {0, 1}np×np , where aij = 1 represents the i-th and j-th patch are adjacent and
aij = 0, otherwise. Then, the graph for the ROI is defined as G = (A,X) by regarding the patches as graph vertexes and
the graph features as the vertex attributes. Note that the blank (background) patches are filtered by a threshold on the mean
intensity of the image and not included in the graph.

The construction of the GCNs refers to Zheng et al.[27]. The network structure is illustrated as Figure 2(a). It includes three
GCN modules and two Diffpool [46] modules. The GCN module is used to embed the contextual information of adjacent
patches and the Diffpool module is to cluster patches in feature space while maintaining the spatial structure of the ROI.
Specifically, the k-th step of graph embedding in a GCN module is defined referring to [44], which is formulated as

H(k) = ReLU(D̃−
1
2 ÃD̃−

1
2H(k−1)W(k)), (1)

where Ã = A + E with E denoting the unit matrix, D̃ = diag(
∑

j Ã1j ,
∑

j Ã2j , ...,
∑

j Ãnpj) is the degree of Ã, and
W(k) is a trainable weight matrix for the k-th step of embedding. H(k) denotes the node representations after the k-th step
of embedding and in specific H(0) = X. Letting (A(l),X(l)) be the graph state before the l-th GCN module in the DRA-Net,
the inference of the l-th GCN with K steps of embedding is abbreviated as

X(l+1) = H(K) = F (l)
gcn(A

(l),X(l)). (2)

The Diffpool module is also defined based on GCN [46], for which the computation flowchart is illustrated in Figure 2(f). The
pooling is achieved by a matrix S(l) ∈ R+

nl×nl+1 with the constraint nl+1 < nl. S(l) is generated by a GCN based on the
current graph state. Specifically,

S(l) = Softmaxr(F (l)
pool(A

(l),X(l))) (3)

with Softmaxr(·) denoting the row-wise softmax function and F (l)
pool denoting a GCN sharing the same definition of 2. Then,

the graph state for the next module is obtained by the pooling functions

X(l+1) = S(l)TX(l),

A(l+1) = S(l)TA(l)S(l).
(4)

Note that the adjacency matrix for the first GCN, i.e. A(0), is the 4-neighborhood adjacency matrix obtained during the graph
construction. Finally, a max-pooling layer is used to quantify the representations of the last GCN module, which is represented
as

g =Maxpoolc(F (l)
gcn(A

(l),X(l))) (5)
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with Maxpoolc(·) denoting the column-wise max-pooling operation. The output g ∈ Rdr is regarded as the feature for the
ROI. Note that the underlying graph structure for each ROI, which is formulated by A(l), is fixed in each GCN stage, and
the underlying structure is changed by the DiffPool module while the node pooling (Eq. 4) is processed.

C. Diagnosis path representing with RNN

The ROI features for the diagnosis path are represented as P = [g1,g2, ...,gnr ]T, where nr denotes the number of ROIs
in the path. In the context of our work, the ROI-level labels are not available. Therefore, we cannot train the ROI feature
extraction network independently by an explicit label for each gt. In this case, we need to establish the connection between the
ROI features and the path-level label and then train the network by the path-level labels. Further considering that the number
of ROIs in different path varies, we determined to build an RNN module to summarize the ROI features and regarded the
output of the last recurrence as the representation of the path. Specifically, we constructed an RNN structure based on the ROI
features to obtain the path-level representation. In this paper, the Gated Recurrent Unit (GRU) [47] are employed to build the
RNN. Regarding gt as the feature for time t, the structure of the GRU is formulated as

zt = σ(Wzgt +Uzht−1),

rt = σ(Wrgt +Urht−1),

h̃ = tanh(Wgt +U(rt � ht−1)),

ht = (1− zt)� ht−1 + zt � h̃,

(6)

where zt and rt serve as the update gate and the reset gate, respectively, the notations involving W and U are trainable
parameters, the � represents the Hadamard product, and ht ∈ Rdr is the activation at time t (h0 = 0).

D. Representative regions mining with self-attention

In the proposed network, the output of the final recurrence of the RNN (hnr ) is regarded as the representation of the path in
the length of nr. hnr is obtained by recurrently computing the activation from the first ROI to the last ROI. The information
of beginning ROIs need traverse the network in both the forward and backward computation to contact with the final output,
and the long-range traverse may affect the ability of the network[48]. To alleviate the problem, we proposed building a self-
attention (SA) module referring to [48] to provide an equally short connection between each ROI feature gt and the final path
representation. It enables the network to highlight the representative ROIs during the encoding. The formulation of the SA
module is

z̃ = Softmax(
qKT

√
dr

)V, (7)

where K = PWkey and V = PWval are the Key and V alue input for the SA module [48], respectively, Wkey,Wval ∈
Rdr×dr are the weights for linear projection and q = hnr is regarded as the Query input. The output z̃ is the softmax-
weighted sum of the local patterns. Afterward, a residue layer z = z̃+hnr is applied to merge the local patterns into the path
representation.

Here, we define the attention score

a = Softmax(
qKT

√
dr

), (8)

which indicates the contribution of the local regions to the global decision. The score will be used to enhance the visual
performance of the recommendation.

E. Recommendation with hashing

SHIR aims to feed back the diagnostically relevant cases based on the WSI regions the pathologists have browsed, rather than
to predict the next item the medical doctors would be interested in. In this context, we proposed to achieve the recommendation
by actively retrieving the most similar cases from the database. The retrieval is completed by hashing search with binary codes
to ensure the high efficiency of the application. Specifically, a hashing layer is connected to the residue layer to converting the
path representation z into a binary code. The hash function is defined as

y = tanh(Whz+ bh), (9)

where the Wh and bh are the weight and bias for the hash function and y ∈ Rdh is the binary-like code which can be
converted into binary code by the sign function c = sign(y).

Letting cq be the code of the path the pathologists has browsed and cj be the j-th code in the database, the similarity of
the two codes is measured by the inner product

θcqcj
=

1

2
cTq cj , (10)
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where θcqcj
∈ {i|i = −dh/2, ..., dh/2}. The larger the θcqcj

, the similar the codes cq and cj . By calculating the similarity
between the current path code and those in the database, the top-similar cases are obtained and then recommended to the
pathologist.

F. Training the DRA-Net

The explicit label for each ROI in the path is unavailable in the practical application of the SHIR. Therefore, we train the
DRA-Net by only using the path-level labels. Specifically, the loss function is built based on the negative log triplet label
likelihood [49], which is formulated as

L =− 1

M

M∑
m=1

log σ(
1

2
yT
am

ypm −
1

2
yT
am

ynm − α)

+ λ
1

M

M∑
m=1

∑
k∈{am,pm,nm}

‖yk − ck‖22,
(11)

where (yam ,ypm ,ynm) denotes the codes of (anchor, positive, negative) for the m-th triplet, M is the number of training
paths, α is defined as the margin in the triplet loss, σ(·) is the sigmoid function to generate the probability, and ck = sign(yk).

All the modules of the DRA-Net, including the GCNs, the GRU, the self-attention, and the hashing module, were trained
end-to-end by backward propagation. The trainable parameters in the network were initialized using the uniform distribution
following [50]. The gradient optimization algorithm was mini-batch Stochastic Gradient Descent (SGD) with the momentum.
The mini-batch data for each step of training was generated by weighted sampling to ensure a balanced distribution of category
labels. Moreover, the batch-hard strategy was used to generate triplets. Specifically, the triplet for each sample was dynamically
constructed in the mini-batch, where the sample itself was set as the anchor, the intra-class (i.e., relevant to the anchor) sample
within the batch that has the farthest distance to the anchor was assigned as the positive sample and the inter-class (i.e.,
irrelevant to the anchor) sample that has the nearest distance to the anchor was regarded as the negative sample. As a result,
the number of triplets for each step of optimization was the same as the size of the mini-batch.

Fig. 4. Instances from the gastric database, where first row displays the screen regions recorded by telepathology platform, the second row provides the
annotations with the notes on the right, and the path labels are provided under the annotations.

IV. EXPERIMENT

A. Dataset

To study the feasibility and effectiveness of the SHIR proposal, we collected a gastric dataset containing 983 gastric cases
and including 5 category of gastric lesions, namely Low-grade intraepithelial neoplasia (LGIN), High-grade intraepithelial
neoplasia (HGIN), Adenocarcinoma (A.), Mucinous adenocarcinoma (MA), and Signet-ring cell carcinoma (SRCC). One
conclusive WSI was selected from each case to build the WSI dataset. We invited pathologists to make diagnoses on the
WSIs using the digital pathology platform1. During the diagnoses, the browsing paths of the pathologists were recorded by the
platform and then supplied for this research. Specifically, the screens focused on by the pathologists under lenses from 10×
(0.96µm/pixel) to 80× (0.12µm/pixel)2 were regarded as ROIs and recorded to the sequential path data. A screen is recognized
as focused when the rendering is completed for display after all the image data within the screen are downloaded from the

1https://gallery.motic.com
2The upper bound of a WSI being browsed in the platform.
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cloud. This process costs around 0.5 to 2 second, depending on the performance of the computer and the internet condition.
The length of the paths ranges from 1 to 61 with an average number of 10.20.

To assess the related fully supervised methods, we invited the pathologists to annotate the exact lesion areas associated
with the paths. Then, the paths were labeled following the priority A.=MA=SRCC>HGIN>LGIN according to the annotated
regions under the path. Particularly, A path was assigned multiple labels if and only it contained more than one malignant
tumors (A., MA, and SRCC), and otherwise, it was assigned a single label. As a result, the total number of area annotations is
9916, and 34 of the total 983 paths have two labels (the percentage is 3.45%). There are no paths with more than two labels.
Several instances from the dataset are presented in Figure 4. Note that the ROI labels and the pixel-level annotations were
only used to do comparison experiments. The ROI labels or the pixel-level annotations were not used in the training of the
DRA-Net. Unless otherwise noted, all the models involving the notation DRA-Net in the experiments were trained only under
the path-level supervision.

B. Experimental settings

The CNN structure for patch feature extraction was the EfficientNet [51] for its good performance in the image classification
task. Specifically, the EfficientNet-b0 structure pre-trained on the ImageNet was used. The resolution to extract the features
is 0.48µm/pixel (under 20× lens). The size of ROIs ranges from 3.02 × 104 to 1.62 × 106 µm2. Correspondingly, the pixel
resolution of the ROIs in the path ranges from 512× 256 to 3360× 2100. The size of patches is 224× 224 and the dimension
of patch feature is df = 1280 as defined in EfficientNet-b0. The step of window sliding is half of the window side length. As
a result, the average number of patches in each ROI is 165.2. The node reduction factor γ = nl+1/nl of the Diffpool module
was set to 0.2 referring to [27]. The margin α in the loss function was set as half of the hash bits, e.g. α = 16 for dh = 32,
referring to [52].

In both the training and the evaluation phases, a pair of paths were considered as relevant if the intersection set of their
labels is nonempty and as irrelevant, otherwise. The precision of top N instances (P@N), mean reciprocal rank (MRR) and
mean average precision (MAP) for recommendation were used to evaluate the recommendation performance, which are defined
as follows

P@N =
1

|T |

|T |∑
i=1

pi(N),

MAP =
1

|T |

|T |∑
i=1

∑|D|
k=1 pi(N) · rik∑|D|

k=1 rik
,

MRR =
1

|T |

|T |∑
i=1

1

ranki
,

(12)

where pi(N) =
∑N

j=1 rij/N with rij = 1 denoting the i-th query instance and the j-th recommended instance are relevant
and rij = 0, otherwise, ranki is the position of the first relevant instance to the i-th query instance, and T and D denote the
collections of the query paths and database cases, respectively.

In the experiment, 295 WSIs (30%) were randomly sampled from the dataset as the query set T and the remainder were used
for training. Furthermore, the training WSIs were randomly divided into five parts with the distribution of (138, 137, 138, 138, 137)
for five-fold cross-validation. The five parts took turns as the validation data with the other parts as the training data and also
as the recommendation database D. In each turn, the model corresponding to the least validation loss was recorded, then used
to encode the database D and query dataset T , and the metrics for this turn were calculated by Eq. 12. Finally, the average
and standard deviation values of the metrics for the five turns were used to assess the performance of the network.

The initial learning rate was set at 0.01. The momentum was set as 0.9. The network was trained by 300 epochs, where the
learning rate decayed by 10 times at the epoch of 150 and 225.

All the algorithms were implemented in python with PyTorch and run on a computer cluster with 10 available GPUs of
Nvidia Geforce 2080Ti. The source code of the proposed method is available at https://github.com/zhengyushan/dpathnet.

C. Structure verification of DRA-Net

1) Ablation study: The DRA-Net ensembles GCN, RNN and attention module, etc. to achieve the path encoding. We first
conducted an ablation study to verify the necessity of these components. The considered degraded models are introduced as
follows
• DRA-Net w/o GCN. The adjacency matrix A in the graph is replaced as a zero matrix, for which the spatial adjacency

information within the ROI is abandoned in the feature extraction.
• DRA-Net w/o RNN. The RNN is replaced as point-wise linear transformation followed by a global average pooling

operation.

https://github.com/zhengyushan/dpathnet
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TABLE I
RESULTS FOR THE ABLATION STUDY, WHERE THE MEAN VALUES FOR THE FIVE-CROSS VALIDATION WITH THE STANDARD DEVIATIONS (IN

PARENTHESES) ARE COMPARED AND THE BEST VALUES ARE SHOWN IN BOLD.

Networks P@5 MRR MAP
DRA-Net w/o GCN 0.782 (0.032) 0.812 (0.039) 0.812 (0.017)
DRA-Net w/o RNN 0.773 (0.035) 0.779 (0.052) 0.813 (0.019)
DRA-Net w/o Attention 0.778 (0.027) 0.791 (0.021) 0.799 (0.021)
DRA-Net w/o Triplet loss 0.777 (0.025) 0.782 (0.012) 0.825 (0.010)
DRA-Net 0.810 (0.022) 0.816 (0.022) 0.836 (0.010)

• DRA-Net w/o Attention. The attention model is removed, and the output of the RNN q directly feeds to the hashing
module.

• DRA-Net w/o Triplet loss. The triplet loss function is replaced with a common hashing loss function used in [14].
The experimental results are presented in Table I. It shows that the performance of recommendation decreases when discarding
any of these components. The experiment has demonstrated that the contextual information modeled by the GCN and RNN
is necessary to learn pathology knowledge from histopathology images, and the merging of the local patterns and the global
representation by the attention module is important to improve the recommendation performance. The result has also proven
the advantage of the triplet loss to the traditional hashing loss function for this problem.

2) Verification the RNN module: The function of the RNN module in the DRA-Net is to summary the information of the
collection within different number of ROIs. There are other strategies besides the RNN module that can achieve the function
in the DRA-Net. In this experiment, we implemented another two trainable modules based on interpolation and collection
distance, which are defined as follows.
• Interpolation The collection of ROI features P = [g1,g2, ...,gnr ]T are resized to the same length through Near-

est/Linear interpolation as Pinter = [g̃1, g̃2, ..., g̃nmax
]T, where nmax denotes the maximum path length in the dataset.

The RNN module is removed and the hashing module acts on g̃t, converting it into binary-like code by equation
ỹt = tanh(Wh

interg̃t + bh
inter). Then, the path is represented by the concatenation of the collection of ỹt, which is

formulated as ycat = [ỹT
1 ; ỹ

T
2 ; ...; ỹ

T
nmax

]T. Afterwards, ycat is used as the path index in both the calculation of similarity
measurement and the loss function. The training settings are the same with the DRA-Net w/o Attention.

• Collection distance The RNN module is removed and the hashing module directly acts on the ROI feature, converting
it into binary-like code by equation yt = tanh(Wh

cdgt + bh
cd). The similarity of two paths is directly measured by the

mean distance of all possible pairs of ROI codes across the two paths. Specifically, letting Y = {y1,y2, ...,y|Y|} and
Y ′ = {y′1,y′2, ...,y′|Y′|} denote the code collections of two diagnosis paths, the similarity measurement of the two paths
are defined as

θY,Y′ =
1

|Y|

|Y|∑
i=1

1

|Y ′|

|Y′|∑
j=1

1

2
sign(yi)

Tsign(y′j).

Correspondingly, the item 1
2y

T
am

ypm in the loss function (Eq.11) is replaced as the collection distance format

1

|Yam
|

∑
yam,i∈Yam

1

|Ypm
|

∑
ypm,j∈Ypm

1

2
yT
am,iypm,j ,

where Yam and Ypm denote the code collections of the anchor path and the positive path, and the same modification is
done to the item 1

2y
T
am

ynm
. The regularization for binarization is adjusted to act on each binary-like code in Yam

and
Ypm

. Then, the whole network is trained end-to-end.
For a fair comparison, all the methods did not use attention modules. The results are presented in Table II. The results of Rows
1&2 in the table show that the strategy based on interpolation cannot meet the requirement of the application. Theoretically, the
representation pcat obtained by concatenating the ROI representations implies a strict restriction of the order the pathologists
browsing the ROIs. It will give a low similarity score when two paths are diagnostically relevant but the positions of the
conclusive regions in the two paths are staggered, which contradicts to the labels we use in the training. This label noise
affected the converge of the network, and meanwhile led to poor recommendation performance. The method Collection-
distance achieved a reasonable result. The cross-region measurement strategy ensures all pairs of conclusive regions across two
paths can be reflected in the similarity measurement. However, this strategy indiscriminately calculates the similarities between
all possible ROI pairs. The values from inconclusive ROIs will weaken the discrimination of the similarity measurement. In
contrast, the network equipped with the RNN module performs significantly better. The update gate and reset gate in the RNN
module makes the network be able to maintain the information of important ROIs while restraining the effect of inconclusive
ROIs during the recurrent encoding. It is the major advantage of the RNN strategy to the Collection-distance. Moreover, the
recurrent computation of RNN keeps a linear time complexity (O(n)) to the length of the collections during the running of the
recommendation algorithm, which is more applicable compared to Collection-distance whose complexity is O(n2). Finally,
we adopted the RNN strategy in the proposed method.
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TABLE II
PERFORMANCE COMPARISON OF RNN MODULE AND THE ALTERNATIVE STRATEGIES, WHERE THE TIME COMPLEXITY OF THE RECOMMENDATION TO

THE LENGTH OF THE PATH IS MEANWHILE EVALUATED BY O NOTATION.

No. Method P@5 MRR MAP Time Complexity
1 Nearest-interpolation 0.596 (0.022) 0.602 (0.027) 0.544 (0.026) O(n)
2 Linear-interpolation 0.626 (0.032) 0.621 (0.037) 0.571 (0.027) O(n)
3 Collection-distance 0.731 (0.031) 0.748 (0.032) 0.706 (0.021) O(n2)
4 RNN (DRA-Net w/o Attention) 0.778 (0.027) 0.791 (0.021) 0.799 (0.021) O(n)

TABLE III
RECOMMENDATION PERFORMANCE FOR DIFFERENT RNN MODULES.

RNN P@5 MRR MAP
Simple 0.768 (0.039) 0.775 (0.041) 0.807 (0.012)
LSTM 0.797 (0.021) 0.804 (0.026) 0.818 (0.025)
GRU 0.810 (0.022) 0.816 (0.022) 0.836 (0.010)

We additionally assessed another two RNN structures for the complete DRA-Net. The one is the simple RNN defined as
ht = tanh(W[gt,ht−1] + b) and another is LSTM. The results in Table III indicates that the GRU structure is the most
appropriate for the DRA-Net.

D. Sufficiency assessment of the path-level supervision

The DRA-Net is expected to learn pathology knowledge for cancer diagnosis without manual annotation on the WSI.
Generally, the performance of a learning system will decrease as the supervision becomes weaker. In this experiment, we
quantified the gap of the proposed training strategy to those by stronger supervisions. One optional supervision is for the CNN.
Specifically, the patches in the training set were labeled as six classes (the 5 lesion types plus a type of normal tissue) according
to the pixel-level annotation and used to train the CNN via image patch classification task. Then, in the graph construction
stage, the CNN trained by the patch classification task substituted the CNN trained on the ImageNet dataset to extract the
patch features. Another optional supervision is for the GCN structure. The ROIs were labeled via majority voting of the patch
labels. Then, a hashing layer was built on the ROI features, which was formulated as

yr
i = tanh(Wrhgi + brh), (13)

where gi denotes the feature of the i-th ROI within the training set and Wrh and brh are the weight and bias for the ROI-level
hash function, respectively. Correspondingly, an additional loss function was defined as

L =− 1

Mr

Mr∑
i=1

log σ(
1

2
yrT
ai

yr
pi
− 1

2
yrT
ai

yr
ni
− α)

+ λ
1

Mr

Mr∑
i=1

∑
k∈{ai,pi,bi}

‖yr
k − crk‖22,

(14)

where (yr
ai
,yr

pi
,yr

ni
) denotes codes of (anchor, positive, negative) for the i-th ROI, Mr is the number of training ROIs and

crk = sign(yr
k). The additional loss was added to the path-level loss (Eq. 11) in the training of DRA-Net.

The models trained by different supervision combination are compared in Table IV. Generally, the model trained with full
supervision (the first row in Table IV) achieved the best recommendation performance. The MAP for this model has reached
to 0.851, which can be regarded as the upper bound of the DRA-Net structure for the SHIR task. The DRA-Net trained simply
by the path-level labels has a MAP of 0.836, which is only 0.015 inferior to the upper bound. Meanwhile, the accuracy for
the top-recommended items (P@5 and MRR) shows little difference to the upper bound. The results have indicated that the
path-level (i.e., the WSI-level) supervision is sufficient to train the DRA-Net. It means the workload of pixel-level annotations
for pathologists can be relieved in the cost of a slight decrease in the recommendation accuracy. The result is promising for
building an automatic learning system based on large scale telepathology databases.

We also considered the rate of convergence of the assessed models. The loss curves for training are drawn in Figure 5. It
shows the proposed DRA-Net converged in 300 epochs, which cost about 2 times longer than the models utilizing pixel-level
supervision. The speed of convergence is acceptable.

E. Effect of the session length

The recommendation application is expected to continuously running from the first view to the last view during the diagnosis,
and the recommendation results should be updated when a new view is appended to the path. In this situation, we conducted
experiments to assess the running performance of the system. Specifically, for each path in the testing set, we evaluated the
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TABLE IV
COMPARISON OF THE DRA-NET MODELS TRAINED BY DIFFERENT SUPERVISION STRATEGIES, WHERE Pixel, ROI, AND Path RESPECTIVELY DENOTE THE

SUPERVISION OF PIXEL-LEVEL ANNOTATIONS, ROI-LEVEL LABELS, AND PATH-LEVEL LABELS CONSIDERED IN THE TRAINING. THE DETAIL
DESCRIPTION FOR THE SUPERVISION PLEASE REFER TO SECTION IV-D

No. Supervision P@5 MRR MAPPixel ROI Path
1 X X X 0.813 (0.057) 0.815 (0.057) 0.851 (0.021)
2 X × X 0.806 (0.028) 0.808 (0.023) 0.843 (0.010)
3 × X X 0.805 (0.005) 0.809 (0.018) 0.847 (0.008)
4 × × X 0.810 (0.022) 0.816 (0.022) 0.836 (0.010)
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Fig. 5. The loss values as a function of training epochs for DRA-Net trained by different supervision strategies.

recommendation accuracy for time t = 1, ...,max(20, nr). The path label for time t was simulated based on the annotation of
the pathologist. The average metrics as a function of t are displayed in Figure 6.

Overall, the precision for recommendation apparently improved as the running length of the path (i.e. the number of ROIs
have been reviewed by the pathologists) increasing. Especially, the P@5 is above 93% when the length reached to 17 and then
changes little. The results have demonstrated that the DRA-Net has successfully summarized the local pattern of the current
ROI into the global path representation as the path growing. Furthermore, the increasing monotony trend of the curve indicates
that the information of the conclusive ROIs has been well reserved by the attention module for the final decision.

F. Efficiency of the recommendation

The proposed SHIR application is desired to provide real-time assistant to pathologists during the diagnosis. Therefore, the
running time is an important property for the application. The entire recommendation procedure can be divided into four stages:
1) patch feature extraction based on the CNN, 2) ROI feature extraction based on the GCN, 3) ROI feature fusion based on
the RNN and attention module, and 4) binarization and retrieval. The first two stages are processed only once as a new ROI
appended to the path, and the extracted ROI feature will be shared in the follow-up processing.

The factors that significantly affects the speed of the proposed method are the magnification to extract the ROI features
and the step of patch sampling. In this experiment, we evaluated the different combination of the two factors. The results are
presented in Table V. Generally, the accuracy of recommendation increases when the magnification becomes larger and the
step of patch sampling becomes smaller. Correspondingly, the FLOPs significantly grow as the average number of patches in
each ROI increases. To meet the real-time requirement and meanwhile maintain the high accuracy of the proposed framework,
we determined to extract ROI features under the magnification of 20 lenses and set the step of sampling patches to be half

TABLE V
EFFECT OF THE ROI MAGNIFICATION AND PATCHES SAMPLING IN THE GRAPH CONSTRUCTION.

No. Configuration P@5 MRR MAP #FLOPsMag. Step
1 10× 224 0.760 0.767 0.796 10.14B
2 10× 112 0.781 0.791 0.819 21.31B
3 20× 224 0.789 0.807 0.810 24.85B
4 20× 112 0.810 0.816 0.836 72.79B
5 40× 224 0.806 0.811 0.822 76.95B
6 40× 112 0.817 0.822 0.835 258.49B



11

2 4 6 8 10 12 14 16 18 20
Running length of the path

0.7

0.8

0.9

1.0

P@
5

0.
72

8
0.

74
3

0.
76

2
0.

77
9

0.
78

6
0.

79
3

0.
79

5
0.

79
5

0.
79

7
0.

81
3

0.
83

5
0.

85
2

0.
86

1
0.

87
9

0.
88

2
0.

90
2 0.
93

4
0.

93
8

0.
93

5
0.

93
8

Mean value
Standard deviation

2 4 6 8 10 12 14 16 18 20
Running length of the path

0.7

0.8

0.9

1.0
M

AP

0.
76

8
0.

78
0

0.
79

0
0.

80
7

0.
81

3
0.

81
4

0.
81

5
0.

82
0

0.
82

1
0.

83
2

0.
83

9
0.

85
5

0.
86

1
0.

87
5

0.
88

2
0.

89
7

0.
91

4
0.

92
0

0.
92

3
0.

92
4Mean value

Standard deviation

Fig. 6. The P@5 and MAP as function of the running length of the testing paths, where the red points are the mean values of the five-cross validation and
the corresponding standard deviation values are represented by blue shadow.

Fig. 7. The proportion of time consumption of the framework, for which the total time for a step of recommendation is an average of 475 ms over the test
set.

of the patch size (The No. 4 in Table V). As a result, the average time was 475 ms by using one GPU in our experiment
environment. The speed is promising to develop real-time AI assistant for cancer diagnosis. The specific times for the four
stages are illustrated in Figure 7. Obviously, the inference of CNN costs 460 ms, which is about 96% of the total processing
time. The inference of the DRA-Net and the following retrieval process cost about 15 ms, which is very fast and will not
significantly slow down the recommendation speed as the number of the ROIs increases.

The time for retrieval is in an average of 2.70 ms. It benefits from the binary encoding of the path representation and hashing
search based on the Hamming distance. The number of hash bits can be set larger as the scale of the dataset increasing. The
comparison for different bit number on the gastric dataset is given in Table VI. It presents the recommendation performance
is robust to the number of hash bits and 32 is the most appreciated to this dataset.

G. Visualization

Figure 8 illustrates 2 typical instances of the recommendation results by our method. The path in Figure 8(a) starts with
adenocarcinoma regions, and thereby the recommended WSIs are all from adenocarcinoma cases. Then, the WSIs within SRCC
region appears to the recommendation queue at time t = 4 where an SRCC ROI is appended to the input path (as directed
by red arrows). And more WSIs within both adenocarcinoma and SRCC regions are returned when more SRCC ROIs are
appended into the path as the time flowing. The results indicate that the proposed SHIR framework is sensitive to the change
of image content under the path and can provide appropriate information to the pathologists for aided diagnosis. Furthermore,
the recommendation queue changes little after t = 7. The main reason is that the attention score a defined in Eq. 8 (visualized
as the attentive regions in Figure 8) tends to be stable as sufficient regions are provided. It also demonstrates that the attention
module designed in the DRA-Net is effective and robust to locate conclusive regions for lesion recognition. The path in Figure
8(b) displays a hard sample from adenocarcinoma cases. The first ROI in the path (t = 1) was confused with HGIN and, as a
consequence, the recommendation queue was occupied by WSIs within HGIN. While the mistake was quickly corrected when
more ROIs were appended to the path.
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TABLE VI
THE EFFECT OF THE HASH BITS FOR THE PROPOSED RECOMMENDATION FRAMEWORK.

Hash bits P@5 MRR MAP
16 0.795 (0.025) 0.800 (0.024) 0.835 (0.021)
32 0.810 (0.022) 0.816 (0.022) 0.836 (0.010)
48 0.805 (0.026) 0.807 (0.026) 0.841 (0.021)
64 0.791 (0.018) 0.800 (0.019) 0.832 (0.019)

TABLE VII
COMPARISON OF THE RECOMMENDATION METRICS FOR RELATED APPROACHES AND THE PROPOSED METHOD, WHERE THE BEST SCORE FOR EACH

COLUMN IS DISPLAYED IN BOLD.

No. Method Supervision P@5 P@20 MRR MAPPixel ROI Path
1 Jimenez-del-Toro et al. [26] × × × 0.647 (0.042) 0.635 (0.046) 0.691 (0.025) 0.663 (0.036)
2 Yan et al. [28] × X × 0.701 (0.036) 0.684 (0.034) 0.732 (0.018) 0.721 (0.025)
3 Zheng et al. [27] × X × 0.712 (0.032) 0.693 (0.036) 0.716 (0.041) 0.735 (0.018)
4 DPath-Net[29] × × X 0.778 (0.027) 0.760 (0.026) 0.791 (0.021) 0.799 (0.021)
5 DRA-Net (Ours) × × X 0.810 (0.022) 0.800 (0.012) 0.816 (0.022) 0.836 (0.010)

H. Comparison with related methods

We compared the proposed method with related works. Since we are the first to deal with the recommendation problem for
histopathology WSIs, there are no complete frameworks that can be directly compared. In this situation, we modified three
related methods [26], [27], [28] to meet the requirement of the proposed recommendation application. The methods were
detailed below.
• Jimenez-del-Toro et al. [26] The method deals with the retrieval task of WSIs. Referring to [26], we measured the similarity

of two WSIs by the mean cosine distance of all possible pairs of patch features across the two paths and obtained the
recommendation results by similarity ranking.

• Yan et al. [28] The method is designed for histopathology ROI classification. The CNN features of patches in an ROI are
ordered as sequential data from left to right and then top to bottom based on the patch locations in the ROI. Then, the
sequential data is fed into a 4-layer bidirectional LSTM to obtain the ROI representation.

• Zheng et al. [27] The method is designed for irregular-shape ROI retrieval. The ROIs are encoded as graphs and the
features of the ROIs are extracted by GCNs with Diffpool modules. The approach to constructing the graphs and the
structure of the GCN-Diffpool network are the same as those in the DRA-Net.

• DPath-Net [29] The recommendation network finalized in the conference version of the paper, which is also the method
DRA-Net w/o Attention discussed in the ablation study.

The methods by Yan et al. and Zheng et al. rely on ROI labels. In this experiment, we trained the networks in the two methods
based on the ROI labels. Meanwhile, we adapted the patch-based similarity measurement proposed in [37] to the ROI features
to realize the recommendation. The comparison results are given in Table VII.

Overall, the proposed DRA-Net performed significantly better than the other methods. The level of supervision (ROI labels)
in [28] and [27] was stronger than that in DRA-Net, but the two methods considered the ROIs as individual samples and did
not utilize the contextual information among the ROIs. In comparison, DRA-Net modeled the contextual information with the
RNN. The higher level of pathology knowledge for lesion recognition was learned from the relationship within the collection
of ROIs. Therefore, the recommendation performance of DRA-Net is superior to those by [28] and [27].

I. Extended evaluation for ROI retrieval

It is noted that the GCN module in the trained DRA-Net is able to extract ROI features, which are potential to achieve
the task of ROI retrieval. Therefore, we conducted extended experiments to assess the performance of the DRA-Net for ROI
retrieval. In this case, the DRA-Net should be regarded as a weakly supervised solution since the training of the DRA-Net
did not use ROI labels. The dataset split in this experiment was the same as that in the WSI recommendation experiment.
The ROIs in the paths were regarded as individual samples in the retrieval. The P@5, MRR, and MAP are also used as the
metrics. Furthermore, we additionally calculated the Recall@N (R@N) [16], [53], [54], [55] in this experiment to assess the
success rate that the doctors obtain useful information by only examining N returned items. The R@N is defined as

R@N =
1

|T |

|T |∑
i=1

max
1≤j≤N

(rij) (15)

In addition, we implemented an unsupervised framework, multi-binary-code (MBC) [37] and a fully supervised method,
GCN-Hash [27] for comparison purpose. The results are presented in Table VIII.
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Fig. 8. Instances of visual performance of the proposed recommendation framework, where (a) displays the result for a path within A. and SRCC regions, (b)
displays a path within only A. regions, the first column in each instance gives the input path in different time t, the second column shows the top-3 attentive
regions according to the attention scores (Eq. 8), and the right columns present the recommended slides (the incorrect results are marked by red crosses). For
a clear display, only the path screens within abnormal tissue are counted and drawn in the figure.

Overall, The retrieval performance by the DRA-Net is significantly better than the unsupervised method (MBC) and is also
comparable with the fully supervised method (GCN-Hash) under the metrics P@5, R@5, and MRR. Especially, our method
achieved an R@5 of 0.849 and an MRR of 0.755, which are the best in the comparison. The results have indicated the proposed
DRA-Net is potential to develop an efficient ROI retrieval system. Moreover, the comparable retrieval performance with the
fully supervised framework has demonstrated that the DRA-Net learned discriminative ROI features to identify the regions
containing different tissue types although only the path-level labels were provided.

V. DISCUSSION

In the modeling phase, we took the browsing path and employed an RNN module to extract the feature of the path, and
found the design was reasonable based on experimental evaluation. The usage of the RNN module here is quite similar to the
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TABLE VIII
COMPARISON OF ROI RETRIEVAL PERFORMANCE ON THE GASTRIC DATASET, WHERE THE CLASSIFICATION ACCURACY BY MAJORITY VOTING OF THE

TOP-5 RETURNED SAMPLES, I.E. THE K-NEAREST NEIGHBOR CLASSIFIER WITH K=5, IS ALSO EVALUATED.

Method Retrieval Classification
P@5 R@5 MRR MAP Accuracy

MBC [37] 0.610 0.805 0.709 0.658 0.671
GCN-Hash [27] 0.725 0.735 0.743 0.798 0.731
DRA-Net-ROI 0.692 0.849 0.755 0.739 0.695*
* The accuracy was calculated as a reference only. Theoretically, the ROI classi-

fication cannot be realized here because the ROI labels should not be available
in this experiment.

TABLE IX
EXPLICIT ASSESSMENT OF THE CONTRIBUTION OF THE SEQUENTIAL DATA.

Operation P@5 MRR MAP
Rand-erase 20% ROIs 0.755 (0.033) 0.781 (0.026) 0.791 (0.018)
Rand-erase 50% ROIs 0.676 (0.029) 0.660 (0.037) 0.751 (0.022)
Shuffle ROIs 0.809 (0.015) 0.812 (0.020) 0.832 (0.007)
Original 0.810 (0.022) 0.816 (0.022) 0.836 (0.010)

studies [8], [28] in the domain of histopathology image/WSI analysis. Here, we further assess the effect of ROI order in the
path by conducting the following experiments.
• Rand-erase n% ROIs: n% of the ROIs in each path are randomly erased during the training and testing stages. (The path

contains at least one ROI.) The order of the remainder ROIs and the label for the path are not changed.
• Shuffle ROIs: The order of the ROIs within each path is randomly shuffled.

The results are provided in Table IX. The performance significantly reduced when half of the ROIs were removed from
each path (see No.2 in Table IX). Especially, the precision of the top-5 recommended cases decreased by 15.4%. The most
likely reason is the conclusive ROIs were lost in some paths and the semantics within these path were changed, which had
misled the DRA-Net in learning diagnostic patterns. Whereas, the performance was almost unchanged when the ROIs in a
path were randomly shuffled. It indicates the order the pathologists review the screens has limited effect on the diagnostic
information within the path data. Based on these results, we can conclude that 1) the complete record of the browsing path
for the diagnosis of the pathologist is important to our framework, and 2) the main contribution of the RNN module in the
DRA-Net is to summarize the key information within the path rather than depict the order the ROI appearing in the path.
Moreover, the comparable results achieved by Shuffle ROIs have shown possible benefits to the practical application that 1)
the ROIs do not have to be fed into the network strictly in chronological order which makes the application of the DRA-Net
more flexible, and 2) the shuffle operation could be used as a type of data augmentation which would improve the robustness
in the modeling of some histopathology types.

The context of our research is online telepathology platforms, where the data mainly come from remote consultations. There
will be multiple paths from different users of the platform for a WSI if the WSI is publicly available. However, only the path
generated by the assigned pathologist during the consultation is rigorous related to the diagnostic report of the pathologist.
The paths generated by other users have indeterminate meanings because many of them browse the WSI for purposes other
than diagnosis. Therefore, only the browsing record generated during the consultation period can be considered for the SHIR
application. In the construction of the gastric dataset, we assigned the WSIs we collected to pathologists working for the
telepathology platform to make diagnoses. During the diagnosis, we recorded the browsing paths of the pathologists. A WSI
was assigned to a single pathologist. Therefore, there is a single path for each WSI in the gastric dataset.

We have tried to detect focused screens by monitoring the duration of stay and the movement distance on the slide as
suggested in [56]. However, the time of loading a screen from the cloud for clear display varies a lot to the internet condition
and computer performance. And the meaning of the movement distance is also different as the screen resolution of the computer
changes. These issues had made it hard to design robust thresholds for the path collection task. Instead, we directly used the
tag of Rendering Complete (The rendering includes downloading image tiles within the screen from the cloud and mosaicking
the tiles for clear display) of the platform as the trigger of ROI recording. The principle is as follows. 1) Before the rendering
is completed, the screen will display a blurred thumbnail of the region. The pathologist should wait for the rendering to be
completed if the region is important in the diagnosis. 2) The rendering starts when the screen stops moving. Therefore, quick
sliding on the WSI will not trigger the rendering, and thereby the passing area will not be recorded. 3) Owning to the cache
mechanism of the browsing system, small movement and zoom or the revisit to a specific screen will not repeatably trigger the
rendering and thereby ROIs with high overlap rate will not be repeatably recorded to the path. Benefiting from these properties
of the digital platform, the ROIs were robustly recorded without excessive redundancy.

The reason we decided to extract the ROI features using graph neural networks (GNNs) is that the ROI varies in size and
shape. Theoretically, there are no special restrictions on GNN structures in our framework. The reason we used the graph
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convolution network (GCN) structure in [1] is the GCN structure has been proven robust and effective in a large number of
studies on graph data processing. We have tried to substitute the GCN embedding formulation in the DRA-Net with the naive
GNN embedding H(k) = ReLU(AH(k−1)W(k)), and observed a slight decrease in the metric P@5 by 0.009 and MAP by
0.007 for the recommendation performance task. This change is reasonable, which is in line with the expectations.

Although we found the RNN performs better than a naive mean pooling layer, we also realized the discrimination of
the path representation can be further improved by the attention mechanism referring to the recent studies on the relevant
recommendation [23], [42]. That was one of the reasons we built the self-attention module at the end of the DRA-Net. The
experimental results have shown that the self-attention module has improved the P@5 by 3.2%, MRR by 2.5%, and the MAP
by 3.7%. The improvement is significant.

The labels in the standard cross-entropy loss function (the widely used class-exclusive loss function) are required to be
one-hot, i.e., only one entry in the label vector is allowed as non-zero. Whereas the path labels considered in our problem
sometimes contain more than one non-zero entries. Therefore, the cross-entropy loss is inappropriate to the DRA-Net. That is
one of the reasons that we used the triplet loss function to train the DRA-Net.

The methods we compared in the manuscript were either similar application or related methodology to our work. The paper
[26] deals with the retrieval task of WSIs, of which the application is similar to ours. The paper [28] proposes encoding the
structural information of an ROI using the RNN. It provides an alternative solution to encode an ROI besides the GCNs we
used.

Technically speaking, the methodology of the proposed SHIR application is with the domain of content-based image retrieval.
The recommendation is achieved by searching for diagnostically relevant cases from the established database. The main
difference of the proposed method from the general CBIR framework is that the query data is a sequence of ROIs with
different lengths, rather than a single ROI. The main reason we drew an analogy with the recommendation systems is that the
user experience of the proposed application is similar to the recommendation. The system feeds back relevant merchandise/tumor
cases based on the context the users/medical doctors have browsed. The major difference of the proposed SHIR application
to the common session-based recommendation is that the goal of the application is to predict and retrieve the diagnostically
relevant cases from the historical archives, rather than predict which regions the pathologists would review next.

VI. CONCLUSION

In this paper, we contributed a novel DRA-Net for modeling the browsing path of the pathologist and a novel computer-aided
cancer diagnosis framework named session-based histopathological image recommendation (SHIR). The WSI label is validated
to be sufficient to train the DRA-Net, for which pixel-level or ROI-level annotations of pathologists can be relieved. The SHIR
based on the DRA-Net can actively recommend diagnostically relevant cases from the database of the telepathology platform
while the pathologists are browsing the WSI. The experiments have shown that the DRA-Net has successfully learned the
pathology knowledge for lesion recognition by only using the WSI labels, and the SHIR framework achieves a good accuracy
in the application for gastric cancer database. The time for a step of recommendation is less than 0.5 seconds, which is very
efficient and is adequate to develop real-time applications. The future work will focus on training automatic cancerous region
detection models based on the supervision of the diagnosis paths.
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