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Abstract

Background and objective: Color consistency of histological images is signifi-

cant for developing reliable computer-aided diagnosis (CAD) systems. However,

the color appearance of digital histological images varies across different speci-

men preparations, staining, and scanning situations. This variability affects the

diagnosis and decreases the accuracy of CAD approaches. It is important and

challenging to develop effective color normalization methods for digital histo-

logical images.

Methods: We proposed a novel adaptive color deconvolution (ACD) algo-

rithm for stain separation and color normalization of hematoxylin-eosin-stained

whole slide images (WSIs). To avoid artifacts and reduce the failure rate of

normalization, the multiple prior knowledge of staining is considered and em-

bedded in the ACD model. To improve the capacity of color normalization

for various WSIs, an integrated optimization is designed to simultaneously es-

timate the parameters of the stain separation and normalization. The solving

of ACD model and application of the proposed method involves only pixel-wise

operation, which makes it very efficient and applicable to WSIs.
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Results: The proposed method was evaluated on four WSI-datasets includ-

ing breast, lung and cervix cancers and was compared with 6 state-of-the-art

methods. The proposed method achieved the most consistent performance in

color normalization according to the quantitative metrics. Through a qualita-

tive assessment for 500 WSIs, the failure rate of normalization was 0.4 % and the

structure and color artifacts were effectively avoided. Applied to CAD methods,

the area under receiver operating characteristic curve for cancer image classifi-

cation was improved from 0.842 to 0.914. The average time of solving the ACD

model is 2.97 s.

Conclusions: The proposed ACD model has prone effective for color nor-

malization of hematoxylin-eosin-stained WSIs in various color appearances. The

model is robust and can be applied to WSIs containing different lesions. The

proposed model can be efficiently solved and is effective to improve the perfor-

mance of cancer image recognition, which is adequate for developing automatic

CAD programs and systems based on WSIs.

Keywords: Color normalization, digital pathology, stain separation, WSI,

CAD

1. Introduction

Cancer diagnosis still relies on histopathology [1], which involves the micro-

scopic examination of tissue to study the manifestations of the disease. Histo-

logical slides are stained with multiple dyes to color different types of tissues [2].

With the development of digital pathology, histological slides can be scanned

rapidly using advanced micro-scanners and stored as digital whole slide images

(WSIs). This enables pathologists to view slides on a screen. Based on digi-

tal WSIs, an increasing number of computer-aided-diagnosis (CAD) approaches

have emerged in the last two decades [3, 4, 5, 6]. A competent WSI-based

CAD system can help pathologists locate diagnostically relevant regions from

the WSIs [7, 8], which improves the efficiency and reliability of diagnoses.

Color consistency of digital WSIs is quite important for CAD based on WSI
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analysis [9, 10]. In practical applications, the appearance of WSIs varies due

to different specimen preparations, staining situations, and section scanners

[11]. This variability affects the diagnosis and decreases the accuracy of CAD

approaches. To overcome the variability, many color normalization methods for

histological images have been proposed. [12]

A group of methods realized the normalization via histogram transformation

in different color space[13, 8, 14]. These methods were designed with reference

to the normalization of natural scene images and ignored the prior knowledge

that histological images are colored by multiple stains. The performance of

normalization is limited.

In contrast, more methods are based on the prior knowledge that the color of

WSIs is the combination of several independent stains. A set of these methods

[15, 16, 11] proposed normalizing histological images by separate transforma-

tions, where pixels belonging to different stains were classified and then nor-

malized through stain-specific transformations. The color of histological images

can be effectively transformed to a template image by these methods. However,

the normalization via multiple transformations occasionally causes structural

artifacts in the normalized images.

In comparison, a number of methods proposed establishing a unified trans-

formation for all the pixels [17, 18, 19, 20, 21]. Instead of directly classifying

pixels for different stains, the independent stain components were estimated

and separated from the pixel values. Next, the separated stains were aligned to

that of the template image, and then recombined to achieve the normalization.

The color of the normalized images is relatively smoother than that obtained

by separate-transformation-based methods, and thus the structure can be ef-

fectively preserved [19]. While, the constraints for stain proportion and over-

all intensity are relatively weak compared to the methods based on separated

transformation, for which color artifact occasionally appears in the normalized

images.

In this study, we propose a novel adaptive color deconvolution (ACD) model

for color normalization of hematoxylin-eosin-stained (H&E-stained) WSIs. The
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normalization is achieved through a unified color transformation for pixels from

the source image to the template image. Compared to the separate-transformation-

based methods [16, 11], our approach does not rely on the classification of stains.

The parameters for color normalization are estimated from the distribution of

pixel values through an integrated optimization. Therefore, the structural in-

formation of histological images can be well preserved. Different from current

methods based on unified transformation [19, 22, 20], the parameters for stain

separation and normalization are simultaneously estimated in the integrated

optimization, for which the color consistency of the normalization is improved.

Moreover, the proportion of stains and the overall staining intensity are con-

sidered and embedded in the ACD model, which effectively reduces the failure

rate of stain separation and thus delivers a more robust color normalization.

Compared to the transformation-based methods of [11, 20, 23], both the so-

lution and application stages of the proposed method only contain pixel-wise

operation and involve no pixel interaction. It determines the proposed method

is light, fast, and applicable for developing efficient CAD programs and systems

based on WSIs.

The proposed method was evaluated on aspects of color normalization, stain

separation, computational complexity and effectiveness for CAD approaches on

four histopathological image datasets, and was compared with the state-of-the-

art methods [8, 14, 16, 11, 22, 19]. The experimental results have shown that the

proposed method is effective for H&E-stained histological image normalization

and the overall performance is superior to the compared methods in quantitative

and qualitative assessments.

The remainder of this paper is organized as follows. Section 2 reviews the

related studies. Section 3 introduces the methodology of the proposed method.

The experiment is presented in Section 4. Section 5 provides necessary discus-

sions and suggests directions for future work. Finally, Section 6 summarizes the

contributions.
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2. Related work

Most of the works related to our method are reviewed in this section. The

histogram-transformation-based methods are first introduced. Then, the meth-

ods based on separate transformation and unified transformation are reviewed.

A briefly comparison for different category of methods are summarized in Table

1.

2.1. Histogram-transformation-based methods

Wang et al. [13] introduced a linear color transform method [24] into his-

tological images. The normalization was achieved by transforming the color to

a template image by a linear projection in lαβ color space. Zheng et al. [8]

proposed normalizing WSIs in HSV-space, in which the saturation and value

channels were stretched. The method can normalize global illumination and

saturation of WSIs and has proven effective in improving the performance of

WSI analysis. Janowczyk et al. [14] realized stain normalization using sparse

auto-encoders. Pixels in histological images were clustered based on the fea-

tures generated by the sparse auto-encoders and the pixels belonging to the

same cluster were transformed to the template image using a specific histogram

projection.

These methods derive from nature scene image processing and barely utilize

the staining characteristic of histological images. As a result, tissue area and

background are occasionally confused after the normalization [15].

2.2. Separate-transformation-based methods

Based on the prior knowledge that histological images are colored by inde-

pendent stains, the methods based on multiple transformations were proposed

[15, 16, 7]. Typically, Khan et al. [16] proposed a specific color deconvolution

(SCD) algorithm. In this method, pixels belonging to the same stain were ex-

tracted through a classification model and a staining vector was estimated by

analyzing the distribution of the pixels belonging to the stain. Based on the
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staining vector, a non-linear mapping approach was designed to transfer the im-

age color to the template image. For more stable performance, the prior knowl-

edge of nuclei structure was considered for the pixel classification process. In

[11], the nuclei were detected by using the Hough transform [25]. Then, the pix-

els belonging to the type of nuclei, cytoplasm and background were accurately

classified. Therefore, the color of different types of pixels can be sufficiently

transformed to the template image. While, since the pixels in the images are

normalized through different transformations, it probably brings color discon-

tinuity into normalized images and causes improper structural changes on the

border of different stains. Moreover, the Hough transform method requires ad-

ditional computation for the normalization, which may become the bottleneck

of an efficient CAD approach.

2.3. Unified-transformation-based methods

Compared to the aforementioned methods, An increasing number of methods

proposed to establish a unified transformation model for pixels in the images.

Instead of classifying the pixels as different stains, these methods proposed ex-

tracting independent stain components from pixels and then established a uni-

fied transformation for all the pixels based on the separated stain information.

Color deconvolution (CD) [26] has proven effective in stain separation for his-

tological images [27, 28, 29, 30, 31, 32]. Based on CD, the color normalization

methods were emerged [33, 18], in which transformations between the source

image and the template image were established through CD and its inverse

operation. These methods commonly deliver a more reasonable visual perfor-

mance and help preserve the local contrast in histological images. Specifically,

Zhou et al. [22] proposed modifying the CD matrix through an optimization for

H&E-stained histological images. The variable of the optimization is the exact

CD matrix. The objective function enforces the third channel (i.e., the back-

ground channel) of the deconvolution result to be zero. However, the specificity

of H&E-staining is not considered in the optimization, for which the normaliza-

tion performance is limited. Referring to CD [26], the items in the CD matrix
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Table 1: A summary of the consideration and ability of models in different categories of color

normalization methods for histological images.

Category Staining Specificity Structure Preservation Color Consistency

Histogram transformation No No Yes

Separated transformation Yes Weak Yes

Unified transformation Yes Yes Weak

are not independent variables but decided by a stain color appearance (SCA)

matrix. Therefore, the SCA matrix is more reasonable than CD matrix to be the

variables of normalization models. Li et al. [17, 34] regarded the SCA matrix

as the model variables and applied non-negative matrix factorization (NMF) to

solving the corresponding model. Furthermore, sparse constraint was considered

in NMF model for the assumption that most of the pixels contain one type of

stain [35, 19, 20]. Typically, Vahadane [19] designed a normalization approach

for WSIs based on sparse NMF (SNMF). The sparse constraint enhanced the

recognition ability of the model for separating independent stains. In these

methods, the weighting of stains is processed independently after stain separa-

tion, for which the capacity of color normalization is limited. Furthermore, the

overall intensity and proportion of the separated stains are not considered in

the model of stain separation. It risks a bias in stain separation, for which most

of the pixels would be normalized to share the appearance of single stain.

Building on these methods, we propose an adaptive color deconvolution

(ACD) model for stain separation and color normalization of histological images.

Taking the SCA matrix as the variables, the ACD model is solved through an

integrated optimization. The normalization is achieved by a unified transforma-

tion for the pixels in the image. The proposed method inherits the advantage of

the unified-transformation-based methods [19, 20]. The structural information

of histological images is well preserved.

The contribution of our work to the problem is two-fold:

• Besides the consideration for the specificity of H&E staining, the overall

intensity and proportion of the stains are additionally considered and em-
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Figure 1: Flowchart of the proposed normalization method, where (a) denotes the original

WSI (A featured sub-region of the WSI is chosen to display.), (b) is the visualization of

R/G/B channel in the optical-density-space, (c) shows the density of hematoxylin and the

eosin stains separated by an adaptive color deconvolution matrix, (d) displays the weighted

stains, (e) shows the R/G/B channel recombined with the stain parameters of the template

WSI, and (f) shows the result of the normalization.

bedded in the ACD model, which effectively reduces the failure of stain

separation and then avoids color artifacts in the normalized images.

• The parameters for stain intensity normalization are simultaneously es-

timated with the parameters for stain separation based all the pixels in-

volved in an integrated optimization. Compared to the present models

of [19, 20] where the parameters for stain normalization are calculated

based on the pseudo maximum of the separated stains, the capacity of our

model to handle different color variance is extended and thereby the color

consistency of the normalized images is improved.

3. Method

Fig. 1 presents the flowchart of the proposed normalization. For a certain

WSI, a group of pixels are sampled from the tissue region and converted into

optical density (OD) space. The normalized H&E components are obtained

based on an ACD matrix and a stain-weight matrix for the WSI. Finally, the
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H and E components are recombined with the SCA matrix of a template WSI,

achieving the color normalization. The approach to obtain the ACD matrix

and the stain-weight matrix are the essential of our method. In this section,

the ACD model is first introduced and then the normalization method based on

ACD is described.

3.1. Color deconvolution

The theory of color deconvolution (CD) [26] is the basis of ACD. CD is

proposed based on Beer-Lambert law. Letting xi ∈ R3×1 denote the value in

RGB color space for the i-th pixel in a WSI, CD can be briefly represented with

the following equations

oi = − ln(xi/Imax)

si = D · oi
(1)

where oi ∈ R3×1 denotes the optical density (OD) of RGB channels, D ∈ R3×3

is the so-called color deconvolution matrix, and si ∈ R3×1 is the output that

contains stain densities. Imax denotes the intensity of background, i.e. the

value of pixel when no stained tissue is present. The exact value of Imax varies

with different section scanners. Generally, Imax approximates the maximum

of digital image intensity (255 for 8-bit data format). For H&E-stained WSIs,

the separated densities of stains can be represented as si = (hi, ei, di)
T, where

hi and ei are the values for hematoxylin and eosin stains, respectively, and

di represents the residual of the separation. The deconvolution matrix D is

determined by a SCA matrix M with an inverse operation D = M−1. Further,

M can be manually measured using a designed experiment [26].

3.2. Adaptive color deconvolution

The ACD parameters are obtained by optimization. The variables, objective

and solving of the optimization are presented in the following sub-sections.

3.2.1. Variables

Considering that the deconvolution matrix D is determined by the SCA

matrix M, we propose directly optimizing M and then calculating D. Mean-
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while, the parameters for normalizing stain intensities are also solved in the

optimization. Specifically, a stain-weight matrix W = diag(wh, we, 1) is defined

to modify the CD algorithm (Eq. 1) as

oi = − ln(xi/Imax)

si = W ·D · oi.
(2)

W is also regarded as the variable of ACD model and obtained in the optimiza-

tion.

The SCA matrix can be decomposed as M = (mh,me,md), where mj ∈

R3×1(j = h, e, d). In general, mj is a unit vector [19, 20], which describes the

contributions of the j-th stain to the intensities in red, green, and blue channels.

To ensure mj ≡ 1 throughout the optimization, we propose representing mj

using two degree variables as

mj = (cosαj sinβj , cosαj cosβj , sinαj)
T, j = h, e, d.

Then, the SCA matrix M can be represented by six independent degree vari-

ables. For convenience, the six degree variables are represented by a collection

ϕ = {αh, βh, αe, βe, αd, βd},

the SCA matrix decided by ϕ is represented as M(ϕ), and the corresponding

CD matrix is D(ϕ).

3.2.2. Objective

An objective function about variables ϕ and W is defined. By resolving the

function, the optimized set of variables ϕ̂ and Ŵ are obtained, and then the

adaptive matrices M(ϕ̂) and D(ϕ̂) for the WSI are determined. For brevity,

M(ϕ̂) and D(ϕ̂) are also represented as M̂ and D̂ in this paper.

The objective function for ACD is designed primarily on the basis of the

following prior knowledge: (1) There are two types of stains in H&E-stained

WSIs. Therefore, the third channel of the separated result (di) should be zero

in ideal situation. (2) H&E staining has high specificity. Hematoxylin mainly
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stains nuclei and eosin mainly stains the cytoplasm and stroma. Therefore, the

majority of pixels in images alternatively contain H or E stain. Based on the

prior knowledge, the objective function is defined as

Lp =
1

N

N∑
i=1

d2i + λp
1

N

N∑
i=1

2hiei
h2i + e2i

, (3)

where the first item of the function minimizes the residual of the separation,

the second item enforces the value of a pixel being assigned to one stain (H or

E) after the separation, λp is the weight of the two items, and N is the number

of pixels used for the optimization.

Besides the features considered above, the proportion of the two stains and

the overall intensify of staining are equally important for the normalization.

Therefore, the two factors are embedded in the objective function. First, a

function to control the ratio of H and E components is defined:

Lb =

[
(1− η)

1

N

N∑
i=1

hi − η
1

N

N∑
i=1

ei

]2

, (4)

where η ∈ (0, 1) is defined as the balance parameter. Similarly, a function to

control the overall energy of stains is defined:

Le =

[
γ − 1

N

N∑
i=1

(hi + ei)

]2

, (5)

where γ controls the desired intensity of staining.

Finally, the objective function is modified as

L = Lp + λbLb + λeLe, (6)

where λb and λe are the weights.

3.2.3. Solution

The objective is a function of variables ϕ and W, and thus the optimization

is described as

(ϕ̂,Ŵ) = arg min
(ϕ,W)

L(ϕ,W)
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L(ϕ,W) is continuous and differentiable for variables ϕ and W. Therefore,

we utilized a gradient descent algorithm to solve it. The derivatives of the

objective function on the variables of the model are given in the appendix.

In the optimization, only the pixels located on the tissue area are used. In

WSIs, the regions that are devoid of stain are approximately white, and the op-

tical densities of the region pixels are close to zero. Therefore, the background

pixels can be easily filtered by a threshold [15, 11, 19]. Specifically, the pixels

within oi < Tback are recognized as background. Tback was tuned in the interval

of [0.2, 0.5] and determined as 0.28 for the most robust normalization perfor-

mance in the statistical assessment. Then, a binary tissue mask for the WSI can

be obtained. The pixels used in the optimization are randomly sampled from

the WSI based on the tissue mask.

3.3. Color normalization

After the optimization, the adaptive variables for stain separation D̂ and

stain intensity normalization Ŵ are simultaneously obtained. With D̂, the stain

components of a WSI can be separated. Next, the separated stains are weighted

by Ŵ. Finally, the normalization is completed by recombining the weighted

stain components with the SCA matrix of a template WSI M. Specifically, for

the i-th pixel xi of the WSI, the normalization can be formulated by equations

oi = − ln(xi/Imax),

oi = M · ŴD̂ · oi,

xi = exp(−oi) · Imax,

(7)

where xi is the normalized result for xi. Because, M,Ŵ and D̂ are constant

after the solving of ACD, the three matrices can be combined as a transform

matrix T = MŴD̂. Then, the normalization can be efficiently achieved through

linear transformation of pixel values in optical density space, which is formulated

as

oi = T · oi. (8)
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4. Experiments and results

4.1. Setup

Four dataset, Camelyon-16, Camelyon-17, Motic-cervix, and Motic-lung,

were used in the experiments. Camelyon-16 and Camelyon-17 were obtained

from the Camelyon challenge1 for cancer metastasis detection in the lymph

node [36, 37]. Motic-cervix and Motic-lung were supplied by Motic (Xiamen)

Medical Diagnostic Systems Co. Ltd. The profiles are provided as follows.

• Camelyon-16 contains 400 H&E-stained lymph node WSIs, in which 270

WSIs are used for training and the remainder are used for testing. Re-

gions with cancer in these WSIs are annotated by pathologists. All the

annotations for Camelyon-16 are available.

• Camelyon-17 contains 1000 WSIs from 5 medical centers, in which 500

WSIs are used for training and the remainder are used for testing. The

annotations of testing WSIs are not yet available.

• Motic-cervix contains 47 WSIs from 47 patient with cervical cancer (in-

cluding adenocarcinoma and quamous cell carcinoma), in which regions

with cancer are annotated by pathologists.

• Motic-lung contains 39 WSIs from 39 patient with lung cancer (includ-

ing adenocarcinoma and quamous cell carcinoma, large cell carcinoma

and small cell carcinoma), in which regions with cancer are annotated by

pathologists.

The quantitative and qualitative assessments were processed on the Camelyon-

17 dataset, since it consists of WSIs from 5 medical centers and contains rich

color variations. The Camelyon-16 dataset is used to evaluate the normalization

performance for the CAD method, because the labels for both the training and

testing set are available. The experiments were also conducted on Motic-cervix

1https://camelyon17.grand-challenge.org/
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and Motic-lung datasets to verify the applicable ability of our method to other

lesions.

The normalized median intensity (NMI) measure [38] is used to quantita-

tively assess the consistency of normalization, NMI is defined as

NMI(I) = Med
i∈I

(ui)/P95
i∈I

(ui), (9)

where I denotes a WSI, ui denotes the mean value of R, G and B channels of the

i-th pixel in the WSI. Med() denotes the median value, and P95() denotes the

95th percentile [11]. The standard deviation of the NMI values (NMI SD) and

coefficient of the variation (i.e., standard deviation divided by mean) of the NMI

values (NMI CV) for all WSIs were calculated and used as the metrics. The

lower the values of NMI SD and NMI CV, the more consistent the normalization.

To avoid the influence of extensive background regions in WSIs and limit the

amount of computation, sub-images were sampled from the tissue regions of a

WSI to substitute the WSI and the NMI for the WSI was calculated based on

all the pixels in the sub-images. Specifically, sub-images within 2048 × 2048

pixels under the 40× lenses were sampled and the percentage of tissue pixels

in each sub-image was controlled at more than 70% (according to the tissue

mask defined in section 3.2.3). The number of sub-images used for each WSI

was evaluated from 5 to 35 and found 20 was sufficient to deliver a stable

assessment. Therefore, 20 sub-images within 2048 × 2048 pixels were used to

calculate the NMI for each WSI. Notice that some WSIs in Camleyon17 dataset

contain pure black background. These regions were filtered beforehand and were

not considered in the optimization and assessment.

The ACD model was solved using gradient descent algorithm. The optimizer

was selected from SGD, AdaGrad, AdaDelta and Adam and was determined as

AdaGrad [39] as it achieved the lowest NMI SD. The variable ϕ is initialized

based on the SCA matrix suggested in [26] and, W was initialized as a unit

matrix.

The algorithm was implemented in python with tensorflow [40] and was

processed on a computer with an Intel Core i7-7700k CPU of 4.2 GHz and a
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RAM of 32GB. All the experiments were conducted on the same computer.

In this section, the ACD model are first validated on the training set of

Camleyon-17. Then, the normalization performance of the proposed method is

evaluated and compared with the state-of-the-art methods within the test set

of Camelyon-17.

4.2. Validation of ACD model

The structure of ACD model and the settings in the model solving are val-

idated in this section. The experiments were conducted on the training set of

Camelyon-17 dataset. The NMI SD for the normalized WSIs is used as the

metric.

4.2.1. Hyper-parameters

There are five hyper-parameters λp, λb, λe, γ, η involved in our model. These

parameters were adjusted in large ranges. The curve of NMI SDs for different

setting of the hyper-parameters are presented in Fig. 2. A low NMI SD indicates

a good normalization performance. Note that the other hyper-parameters were

fixed when tunning a specific hyper-parameter.

λp, λb, and λe are weights of different items involved in the cost function.

The results for different settings of the three parameters are shown in Fig. 2

(a-c). The three hyper-parameters were selected for relatively low NMI SDs.

Specifically, the three parameters were set as λp = 0.002, λb = 10, and λe = 1

in the following experiments.

In the ACD model, η constrains the ratio of the staining components, and γ

constrains the staining density, respectively. The setting of the two parameters

influences the visual performance. The normalization performance for the dif-

ferent settings of the two parameters are visualized in Fig. 4. According to the

statistical metrics (Fig. 2(d-e)), we suggested γ ∈ [0.25, 0.4] and η ∈ [0.55, 0.7]

in application for a consistent normalization performance. In the following ex-

periments, γ is set to 0.3 and η is set to 0.6 for relatively low NMI SDs.
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Figure 2: NMI SDs for hyper-parameters of ACD model.
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Figure 3: NMI SDs for different training settings of ACD model.

4.2.2. Optimization settings

The normalization performance is also influenced by the settings of the op-

timization, including the number of pixels, the magnification of pixel sampling,

the pixel number used in each interaction (batch size), and the number of in-
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(a) Template (b) γ = 0.3 (c) γ = 0.5 (d) γ = 0.7

(e) η = 0.3 (f) η = 0.5 (g) η = 0.7

Figure 4: Visual performance of the normalized image varied with the control parameters γ

and η, where (a) is a region from the template WSI, (b-d) display the results for different γ,

and (e-g) present the results for different eta.

teractions in the optimization. The curves of NMI SD for different settings of

these factors are given in Fig. 3. The number of pixels used in the optimization

is ranged from 102 to 106. Fig. 3 (a) shows that the model trained with 1,000

pixels can achieve a desirable normalization consistency with an NMI SD of

0.0217. This indicates that the proposed model does not rely on massive num-

ber of pixels. The metric improves from 0.0217 to 0.0210 as the training pixels

are increased from 1,000 to 100,000, and then changes little when further in-

creasing the training pixels. Hence, the number of training pixels is set 100,000

for consistent normalization performance. The magnification of pixel sampling

is also important in the optimization. According to Fig. 3 (b), the proposed

model has a certain robustness to decrease in magnification. For reasonable nor-

malization results, the pixels used in the optimization are sampled from WSIs

under 20× lenses. It can be seen from Fig. 3 (c-d) that the normalization is

stable when the training step is set between 300 and 500 and the batch size is

above 1500. To limit the calculation amount of optimization, the training step
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Table 2: Results of the ablation experiments for the proposed ACD model

Model NMI SD NMI CV

ACD w/o W 0.022 0.028

ACD w/ λp = 0 0.021 0.027

ACD w/ λb = 0 0.063 0.101

ACD w/ λe = 0 0.025 0.034

ACD 0.018 0.023

is set to 300 and the batch size is set to 1500 in the following experiments.

4.2.3. Ablation experiments

In the proposed method, the parameters for stain weighting are simultane-

ously optimized with the parameters of stain separation in our model. To verify

the necessity of the simultaneous optimization, we implemented a control ap-

proach (Abbreviated as ACD w/o W), where the stain-weight matrix W was

not the variable in the optimization but was estimated according to the pseudo

maximum of separated stains [19, 20] after the optimization. Meanwhile, the

optimization without the constraints of stain specificity, stain proportion and

stain intensity were validated by setting the hyper-parameters λp, λb, and λe in

Eq. 6 to be zero. The results are presented in Table 2.

When the estimation of W is independent from the parameters for stain

separation, the result of ACD w/o W deteriorates. It has indicated that the

simultaneous optimization designed in the ACD model can effectively extend

the model capacity of color transformation from source images to the template

image. Therefore, the consistency of the normalization is improved. Obviously,

when the three hyper-parameters λp, λb, and λe are set to zero, the performance

of normalization deteriorates. It has demonstrated that the items defined based

on the prior knowledge (Eq. 3), the proportion (Eq. 4), and the intensity (Eq.

5) of stains are all necessary for a consistent normalization performance.
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4.3. Comparison with the state-of-the-art

4.3.1. Methods for comparison

The color normalization methods developed from different aspects of the

histological slides are compared. Specifically, two methods introduced from

nature scene image processing proposed by Zheng et al. [8] and Janowczyk

et al. [14], the separate-transformation-based methods proposed by Khan et

al. [16] and Bejnordi et al. [11], and other two unified-transformation-based

methods developed by Vahadane et al.[19] and Zhou et al.[22] are involved in

the comparison. The methodologies for these approaches are introduced in the

related works (Section 2).

Table 3: The comparisons of NMI SD and NMI CV for different normalization methods.

Method NMI SD NMI CV

Original 0.139 0.210

Zheng et al. [8] 0.077 0.117

Janowczyk et al.[14] 0.027 0.037

Khan et al. [16] 0.049 0.067

Bejnordi et al. [11] 0.028 0.045

Vahadane et al. [19] 0.042 0.062

Zhou et al. [22] 0.054 0.095

The proposed 0.025 0.034

Table 4: The comparisons of NMI SD and NMI CV for different normalization methods, where

NMIh and NMIe represent the NMI for hematoxylin and eosin stains, respectively.

Method NMIh SD NMIh CV NMIe SD NMIe CV

Original 0.166 0.582 0.144 0.438

Zheng et al. [8] 0.092 0.321 0.081 0.242

Janowczyk et al. [14] 0.017 0.071 0.184 0.392

Khan et al. [16] 0.055 0.203 0.089 0.214

Bejnordi et al. [11] 0.042 0.117 0.028 0.070

Vahadane et al. [19] 0.043 0.109 0.036 0.103

Zhou et al. [22] 0.160 0.362 0.142 0.363

The proposed 0.029 0.067 0.027 0.087
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4.3.2. Quantitative comparison

The test set of Camelyon-17 was used in this experiment. The NMI SD and

NMI CV calculated based on all testing WSIs were used as metrics. The results

of the proposed method were obtained under the hyper-parameters determined

in the training set.

The results of the compared methods are presented on Table 3. It is shown

that the proposed method achieves the best performance in NMI SD and NMI

CV assessment. To intuitively present the distribution of NMI values for the

normalized images, the violin plots [41] for different methods are utilized (Fig.

5). The NMI values of the proposed method are the most clustered. It indicates

that the normalization of the proposed method is most consistent.

Figure 5: Violin plots of NMIs for the compared methods, where the blue shadow presents the

allocation of NMIs for each plot, and the maximum, median, and minimum values for each

plot are signed with bars.

Figure 6: Violin plots of NMIs for independent stains, where H represents the hematoxylin

stain, E represents the eosin stain, the blue shadow presents the allocation of NMIs for each

plot, and the maximum, median, and minimum values for each plot are signed with bars
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The stability for staining separation of the compared methods was also eval-

uated. The normalization results were separated using CD with the parameters

of the template WSIs. The NMI metrics for independent staining components

are presented in Table 4. Correspondingly, violin plots of NMIs for independent

stains are given in Fig. 6. Janowczyk et al. [14] achieves the best NMI SD in

the hematoxylin stain component, but the metrics for eosin are inferior to other

methods. ACD and Bejnordi et al. [11] achieve an equally good quantitative

performance for eosin component. While, the performance of ACD for hema-

toxylin is better than Bejnordi et al. [11]. Overall, ACD is the most consistent

for stain separation among all the compared methods.

4.3.3. Qualitative comparison

To evaluate the quality of normalization, three pathologists were invited to

inspect the normalized results and the WSIs containing apparent artifacts in

normalization were annotated. Specifically, a WSI was considered as failure

once any of the 20 sub-images used in the quantitative assessment contained

structure or color artifacts. The failure rate is calculated by a division of the

number of failures WSI to the number of test WSIs (500) in Camelyon-17.

The results of the assessment are given in Fig. 7. Correspondingly, the visual

performances of the compared methods for 6 challenging WSIs are visualized in

Fig. 8, where the results that contain typical artifacts are framed by red boxes.

The method Zheng et al. [8] was designed to eliminate the variances of illu-

mination and saturation and Zhou et al. [22] did not consider the specificity of

stains in the optimization. The normalization performances of the two methods

are limited. In contrast, the other compared methods have effectively trans-

formed the color to the template WSI. However, various artifacts appear in the

normalized images. Specifically, the eosin stain and the background are occa-

sionally confused in the results of Janowczyk et al. [14]. In Fig. 8(a), A certain

amount of eosin stain surrounding the nuclei is eliminated, which has changed

the environment of nuclei in the image. The result obtained by Bejnordi et al.

[11] exhibits ringing artifacts around nuclei (Fig. 8(c)). The results of Khan et
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Figure 7: Statistical results in the visual assessment, where the percentage of WSIs annotated

by the three pathologists as containing structural or color artifacts are compared, and the

average results are presented on the right.
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Figure 8: Visual performance of color normalization, in which ROIs cropped from challenging

WSIs are displayed, the original ROIs are represented in the first column, the names of these

WSIs are given on the left, the normalization results of the compared methods are presented

on the right, and the results that have apparent artifacts are framed with red boxes.
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al. [16] also have the similar problem. In Fig. 8(b), the area of nuclei apparently

decreases, which will affect the performance of CAD approaches developed based

on nuclei statistics. Compared to the methods above, the results obtained by

unified-transformation-based methods, Vahadane et al. [19] has preserved the

structure of tissue in the images. Therefore, the failure rate is lower than that

of separate-transformation-based methods. On the other hand, color artifacts

remain in the results of normalization, for instance the result in Fig. 8(d).

Overall, the failure rate of the proposed method is 0.4 %, which is relatively

low in the compared methods. Through visual assessment, most of the struc-

ture and color artifacts appeared in the other methods were effectively avoided

by our method. Therefore, the proposed method is the most robust in the

color normalization compared to the compared methods. Typically, the failure

occurred when the color distribution of the WSI was very monochromatic, as

shown on the last row of Fig. 8. This type of color variance is challenging that

all the methods except Bejnordi et al. [11] failed to process it.

4.3.4. Time complexity

The time complexity of color normalization methods is equally important

in application. Especially for an automatic CAD approach based on WSIs, the

running time of the normalization module should not become a bottleneck for

the entire system. For the compared methods, the difference in computational

complexity mainly derives from the estimation of model parameters. The time

complexity for the pixel number n is given in Table 5. The methods proposed

by Khan et al. [16] and Bejnordi et al. [11] depend on pixel classification, which

is individually considered as pre-processing in Table 5. Khan et al. applied a

pixel-wise classifier and the computation is linearly related to the pixel number

n. Bejnordi et al. utilized Hough transform to detect nuclei, for which the time

complexity is O(n3). And in the stage of parameter estimation, the method

of Zheng et al. [8] involved sorting algorithm of pixel values, for which the

complexity is O(nlog2n). Other methods estimated the parameters based on

pixel-wise operation, and the complexity is O(n).
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Table 5: The comparison of time complexity for pixel number n used in the estimation of

model parameters and the average running time for the estimation.

Method Time complexity Running time

Pre-processing Model solution

Zheng et al. [8] - O(nlog2n) 62.1 s

Janowczyk et al. [14] - O(n) 93.1 s

Khan et al. [16] O(n) O(n) 1420 s

Bejnordi et al. [11] O(n3) O(n) 370 s

Vahadane et al. [19] - O(n) 65.4 s

Zhou et al. [22] - O(n) 2.57 s

The proposed - O(n) 2.97 s

The average times required for model parameter estimation are given in

Table 5, where all the methods are implemented on CPU. Furthermore, the joint

results of the quantitative metric and running time of the compared methods are

presented in Fig. 9. For the proposed ACD model, the average time to estimate

the normalization parameters is 2.97 s (including a pixel sampling time of 2.10

s and a model solving time of 0.87 s), which is relatively short compared to a

WSI-based CAD approach.

Janowczyk et al. [14] and Bejnordi et al. [11], which are competitive in the

evaluation of NMI SD, respectively takes 65 s and 370 s in average. Janowczyk

et al. [14] utilized sparse auto-encoders to cluster pixels in different textures,

and Bejnordi et al. [11] applied Hough transform to detect the nuclei for pixel

classification. These operations extended the running time of the two methods.

In contrast, the proposed method estimates the stain parameters using an in-

tegrated optimization and involves no additional operation to identify different

types of pixels. Therefore, the proposed method is much faster than the two

methods. Zhou et al. [22] is simpler than our model, thereby taking less time.

However, the color consistency cannot surpass that of ours. Overall, the pro-

posed method is both effective and efficient for histological image normalization.
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Figure 9: Joint plot of NMI SD and average running time for computing the model parameters

for a WSI, where the time is counted in second and presented in logarithmic coordinate.

4.3.5. Effectiveness in CAD

In recent years, the convolutional neural network (CNN) has become a pop-

ular algorithm for medical image analysis [42]. An increasing number of studies

have applied CNNs to histological image analysis [43, 36, 44, 45, 36]. The re-

cent studies [9, 10] have shown that the normalization of histological images

can improve the performance of CNN-based CAD methods. We conducted ex-

periments to evaluate the improvement of the normalization methods for CNN

model. Camelyon-16 dataset was used in this experiment.

The classification of image patches is the major action of CNNs in CAD

systems for WSI analysis. Hence, a CNN model for histological image patch

classification is established as the benchmark of this experiment. Specifically,

a ResNeXt-50 [46] structure was employed. To fit the input of the network,

patches in size of 224 × 224 pixels were sampled from the WSIs in Camelyon-

16 dataset. In the 270 training WSIs, there are 110 WSIs containing cancer

regions that the pathologists annotated. To ensure the balance, 500 images were

randomly sampled from the cancer regions in each WSI. Therefore, a total 55,000
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Figure 10: Comparison of ROC curve and AUC in application of breast histological image

classification using different normalization methods.

positive samples were generated. In corresponding, 80,000 negative samples

were generated (500 images per WSI) from the 160 WSIs without cancer area.

To make a balance of the positive and negative samples, the 80,000 negative

images were reduced to 55,000 through a randomly sampling. Therefore, a

total 110,000 images in size of 224× 224 pixels were sampled to train the CNN

model. Following the same paradigm, 65,000 images were sampled from the 130

testing WSIs to evaluate the trained CNN model in cancer image classification.

The receiver operating characteristic (ROC) curves and the corresponding area

under curve (AUC) values for the testing set were calculated after 60,000 steps of

training, where the CNN models for the compared color normalization methods

were converged. The results are shown in Fig. 10.

Overall, the proposed method achieves the most evident outcome, which in-

creases the AUC from 0.842 (the bench mark) to 0.914. The normalized images

by Bejnordi et al. [11], Janowczyk et al. [14] and Khan et al. [16] changed

structure of tissue. The results by Vahadane et al. [19] produced color distor-

tion. These artifacts are detrimental for the CNN-model to distinguish patterns
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Table 6: Comparison of metrics before and after the normalization on Motic-cervix dataset.

Metrics
NMI NMIh NMIe Classification

SD CV SD CV SD CV AUC

Original 0.113 0.142 0.107 0.551 0.188 0.583 0.831

Normalized 0.027 0.039 0.032 0.104 0.047 0.132 0.894

Table 7: Comparison of metrics before and after the normalization on Motic-lung dataset.

Metrics
NMI NMIh NMIe Classification

SD CV SD CV SD CV AUC

Original 0.112 0.139 0.142 0.711 0.183 0.879 0.886

Normalized 0.035 0.043 0.031 0.097 0.046 0.151 0.911

in histological images. In comparison, our method performs more robust and

can effectively avoid artifacts in the normalization, and therefore achieves better

performance than other methods in the classification of histological images.

4.4. Application performance on Motic datasets

To further evaluate the application performance of the proposed method

on WSIs containing other lesions, we conducted experiments on Motic-cervix

and Motic-lung datasets. In this experiment, the hyper-parameters of ACD

model were the same as that determined on Camelyon dataset. The metrics

for quantitative assessment was calculated before and after the normalization.

Furthermore, the performance for improving CNN classification model (cancer

versus non-cancer patches) was also evaluated. The paradigm of the evaluation

was the same as that on Camelyon dataset.

The results before and after the color normalization are compared in Tables

6 and 7. It presents that the improvements in color consistency and for cancer

image classification are significant after the normalization in the two datasets.

Fig. 11 and Fig. 12 are the normalization results in motic-lung and motic-cervix

datasets. Through visual assessment, the color normalization is consistent and

no apparent artifacts are found in normalized WSIs on the two datasets. The

experimental results have indicated that the proposed normalization method is

robust and applicable to H&E-stained WSIs from other lesions.
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Figure 11: Normalized regions from different WSIs in Motic-cervix dataset.
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Figure 12: Normalized regions from different WSIs in Motic-lung dataset.

5. Discussion

The ACD model can also be used for color transformation between any two

WSIs based on Eq. 8. The only modification is the transform matrix T. For

example, the color transform from WSI p to WSI q can be achieved with a

matrix

Tpq = (ŴqD̂q)
−1ŴpD̂p, (10)

where Ŵp and D̂p are the adaptive variables for WSI p, Ŵq and D̂q are the

adaptive variables for WSI q. The adaptive variables Ŵ and D̂ for a WSI needs

to be solved only once after the digitalization of the WSI, and can be stored along

with the WSI. When the color transform between any two WSIs is required,

the transform matrix can be directly obtained using Eq. 10. Therefore, it is

very convenient to develop online color transformation applications for digital

pathology systems (e.g. MoticGallery2) using the proposed model.

Based on the transform matrix T, the normalization of the proposed method

is a pixel-wise transformation. It can be completed efficiently by parallel com-

2https://med.motic.com/MoticGallery/
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puting on CPU or GPU. For further acceleration, a look-up-table (LUT) from

the original pixel values to the normalized pixel values can be established for the

transformation. Then, the normalization of the WSI can be efficiently achieved

through the LUT.

In the evaluation for number of pixels used in the optimization, the results

show that the thousands of pixels can deliver a consistent performance of nor-

malization (Fig. 2(b)). The main reason is that the pixels used in the optimiza-

tion are sampled from the tissue area, and the staining in Camelyon dataset is

relatively homogeneous in the WSI. Hence, thousands of pixels can cover the

staining condition of the WSI. For a robust normalization performance, number

of pixels is set to 100,000 in the experiments. It makes the ACD model suc-

cessfully estimate the stain appearance matrix. We also tuned the number in

the experiment on Motic dataset and found that 100,000 pixels were sufficient

to the ACD model.

In the experiment on Motic datasets, the hyper-parameters of ACD model

were the same with those used in Camelyon-17 dataset. The results have shown

that the proposed method achieves a consistent normalization performance and

avoids apparent artifacts. The reason is that the hyper-parameters of ACD

model have robust intervals, and the Camelyon-17 dataset contains rich color

variances in WSIs. Therefore, the hyper-parameters determined in section 4.2

can be robustly applied to other H&E-stained WSIs. When the ACD model is

applied to WSIs in other type of stains, the hyper-parameters should be tuned

following the paradigm provided in section 4.2.

Recently, color normalization methods based on convolutional neural net-

works [47, 23] are emerged. While, the deep convolutional structure in this type

of method brings high computational cost into the normalization, which limits

the applications in efficient CAD systems based on WSIs.

The model of Vahadane et al. [19] was solved by alternating between the

staining matrix M and the stain density of pixels (si). The computational

complexity of this method is similar with our method. To maintain a robust

performance of normalization, the pixels used in the optimization were about
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10 million as suggested in [19]. Therefore, the time to solve the model longer

than our method. The optimization in Zhou et al. [22] is similar with our model

and therefore efficient in solution. However, Zhou el al. used the deconvolution

matrix D as the variable of the optimization, and objective function did not

consider the specificity, the proportion, and the intensity of H and E stains. It

makes the optimization mainly adjust the third row of matrix D, and pay little

attention to the first two rows in D (i.e. the deconvolution parameters for H and

E stains). Therefore, the color appearance cannot be sufficiently transformed

to the template WSI.

The method proposed by Bejnordi et al. [11] identified different type of

stains by detecting nuclei in histological images, and established specific trans-

formation for each stain. Therefore, the normalized color of each stain is con-

sistent with the template image (especially the eosin stain as shown in Fig. 8).

On the other hand, once pixels sharing the similar color in the original im-

ages are classified into different classes, the color of these pixels may be quite

different after the normalization. It will cause apparent color discontinuity in

the normalized WSIs. This type of color discontinuity mainly appears on the

boundary of eosin and hematoxylin stains (as shown Fig. 8 (c)). In contrast, the

unified-transformation-based methods, e.g. [19, 22] and the proposed method,

embedded the prior knowledge of H&E-staining into the model and estimated a

unified transformation for all the pixels. The structural artifacts are effectively

avoided. However, these methods depend on the assumption that the color dis-

tributions of different stains are discriminative in the original WSIs. When the

WSI is very monochromatic, the model is difficult to identify different stains

from the distribution of pixel values. A typical failure instance is presented on

the last row of Fig. 8. This is one of the limitations of our method at present.

One direction of the future work is to introduce the structural knowledge of his-

tological images into the ACD model to assist in the identification of different

stains.

In the ACD model, stain separation is achieved based on Beer-Lamber law.

Hence, the ACD model is potential to be applied to other stains that satisfy
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Beer-Lamber law. While, for stains that do not satisfy Beer-Lamber law (e.g.

some immunohistochemical stains), the application of ACD model is limited.

Another direction of future work is to utilize more general stain separation

approaches in the model, for extending the application scope of the proposed

color normalization method.

6. Conclusion

In this study, we have proposed a novel adaptive color deconvolution (ACD)

model for color normalization of H&E-stained histological WSIs. The normal-

ization is achieved through a unified transformation of pixels from the source

WSI to the template WSI. The prior knowledge involving the specificity, the

proportion and the overall intensity of stains are jointly considered and embed-

ded in the ACD model, which has effectively reduced the failure rate of color

normalization. The adaptive parameters for stain separation and stain nor-

malization are simultaneously solved through an integrated optimization, for

which the consistency of color appearance for the normalized images has been

improved. In terms of computation, both the solution and application of the

proposed method only involve pixel-wise operation, which determines the pro-

posed method is light and applicable to WSI normalization. The experiment

has demonstrated that the proposed method is effective in color normalization

of H&E-stained WSIs in various color situations and from different lesions. The

normalization results are consistent in color appearance and contain few struc-

ture or color artifacts. The average running time for parameter estimation is

2.97s. When using pre-processing method, performance of cancer image clas-

sification is significantly improved. Therefore, the proposed method is robust,

effective, and efficient in color normalization for histological images and is ade-

quate for developing efficient CAD programs and systems based on WSIs. The

future work will focus on 1) using structural knowledge of histological images

to improve the identification of different stains, 2) utilizing more general stain

separation approaches to extend the application scope of the proposed color
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normalization.
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Appendix

The derivatives of the objective function (Eq.6) of the ACD model on the

variables are given in this section.

For a variable θ ∈ {αh, βh, αe, βe, αd, βd, wh, we}, the partial derivatives of

the variable can be calculated based on Eq.6 in the body of the paper as

∂L

∂θ
=
∂Lp
∂θ

+ λb
∂Lp
∂θ

+ λe
∂Le
∂θ

, (11)

where the items of ∂Lp/∂θ, ∂Lp/∂θ, and ∂Le/∂θ are given as follows
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∂θ
− 2

√
Lb

η

N

N∑
i=1

∂ei
∂θ

(13)

∂Le
∂θ

=
∂

∂θ

[
γ − 1

N

N∑
i=1

(hi + ei)

]2

= −2
√
Le

1

N

N∑
i=1

(
∂hi
∂θ

+
∂ei
∂θ

)

= −2
√
Le

1

N

N∑
i=1

∂hi
∂θ
− 2

√
Le

1

N

N∑
i=1

∂ei
∂θ

(14)

From the definition of stains si = (hi, ei, di)
T, the partial derivatives of hi, ei, di

on θ can be represented by a vector

∂si
∂θ

= (
∂hi
∂θ

,
∂di
∂θ

,
∂di
∂θ

)T.

Then, the calculation of ∂L/∂θ can be written as

∂L

∂θ
=

1

N

N∑
i=1

cT · ∂si
∂θ

, (15)

where c is a vector that consists of coefficients summarized from Equations

11-14:

c =


− 4λp

h2i ei
(h2i + e2i )

2
+ 2(1− η)λb

√
Lb − 2λe

√
Le

− 4λp
hie

2
i

(h2i + e2i )
2
− 2ηλb

√
Lb − 2λe

√
Le

2di


Next, the calculation of ∂si/∂θ is presented. From Eq.2 in the body of the

paper, it is
∂si
∂θ

=
∂

∂θ
(WDoi).

33



Here, W consists of the weighting variables wh and we, and D is a function

of degree variables ϕ. Thus, the partial derivatives of si on θ ∈ {wh, we} and

θ ∈ ϕ are discussed separately.

The partial derivatives of si on wh and we are

∂si
∂wh

= diag(1, 0, 0)Doi,
∂si
∂we

= diag(0, 1, 0)Doi. (16)

And, for variables θ ∈ ϕ,

∂si
∂θ

=
∂

∂θ
(WDoi) = W

∂D

∂θ
oi

= W
∂M−1

∂θ
oi

= WM−1 ∂M

∂θ
M−1oi

= WD
∂M

∂θ
Doi.

Specifically, the derivatives of M on each degree variables are

∂M

∂αh
= (

∂mh

∂αh
,0,0),

∂M

∂βh
= (

∂mh

∂βh
,0,0),

∂M

∂αe
= (0,

∂me

∂αe
,0),

∂M

∂βe
= (0,

∂me

∂βe
,0),

∂M

∂αd
= (0,0,

∂md

∂αd
),

∂M

∂βd
= (0,0,

∂md

∂βd
),

(17)

and
∂mj

∂αj
= (− sinαj sinβj ,− sinαj cosβj , cosαj)

T,

∂mj

∂βj
= (cosαj cosβj ,− cosαj sinβj , sinαj)

T,

j = h, e, d
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