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ABSTRACT

Deep learning methods, especially convolutional neural networks(CNN), have been widely used in hyperspectral
image(HSI) classification. Recently, graph convolutional networks (GCN) have shown great potential in HSI
classification problem. However, the existing GCN-based methods have several problems. First, the existing
methods rely too much on the adjacency matrix, which cannot be changed during training. Furthermore, most
of them can only use a single kind of feature, and fail to extract the spectral-spatial information from the HSI.
Finally, for the existing GCN-based methods, it is difficult to achieve the same accuracy as the mature CNN
methods. In this paper, we propose a spectral-spatial hypergraph convolutional neural network (S2HCN) for HSI
classification. Compared with the existing GCN-based methods, S2HCN has the following advantages. Different
from the adjacency matrix that is fixed during training of GCN, S2HCN can dynamically update the weight of
the hyperedge during training, which reduces the reliance on prior information to a certain extent. In addition,
S2HCN generates hyperedges from the spectral and spatial features independently, and adopts the incidence
matrix composed of all hyperedges to replace the adjacency matrix in GCN. In this way, the spectral and spatial
features can be better integrated. Finally, compared to a simple graph structure, the hypergraph structure can
express the high-dimensional relationships in the data, which is beneficial to classification problems. Sufficient
experiments on two popular HSI datasets have proved the effectiveness of S2HCN.

Keywords: Graph convolution networks, hypergraph learning, hyperspectral image (HSI) classification, feature
fusion, deep learning.

1. INTRODUCTION

Hyperspectral imaging refers to an imaging technique that continuously samples the entire electromagnetic
spectrum, and the obtained hyperspectral images(HSIs) include hundreds of spectral bands. Nowadays, HSIs
are widely used in biomedical imaging, agriculture and astronomy.1

Due to the abundant information, HSIs have outstanding performance in remote sensing land-cover classifica-
tion tasks. Hyperspectral classification refers to the pixel-level classification in HSIs. Hyperspectral classification
has roughly passed through two stages of traditional machine learning methods and deep learning methods. In
the traditional machine learning stage, researchers mainly focus on feature extraction and classifier selection. In
the research on feature extraction, feature dimensionality reduction and spatial-spectral feature fusion are the
two main research issues. Feature dimensionality reduction is used to deal with the Hughes phenomenon2 caused
by the redundancy of spectral information. Rodarmel et al.3 first used principal component analysis(PCA) to
reduce the dimensionality of the spectral band, and then PCA became a common preprocessing method. The
method of manifold learning is also used to reduce the dimensionality of hyperspectral image features, such
as4 ,5 . Spatial-spectral feature fusion simultaneously utilizes the spatial and spectral information of HSIs,
which can effectively improve the classification performance. Rajadell et al.6 proposed a spectral-spatial pixel
characterization method that utilize Gabor filters to extract texture features. Fauvel et al.7 use morphological
methods to fuse spatial and spectral features. Classifier selection is another focus of traditional machine learning
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methods. In the actual design of the algorithm, classifier selection is often combined with feature extraction
methods. Many machine learning classification algorithms are applied to HSI classification, such as support
vector machine(SVM)8 ,9 , decision tree10 , etc.

After the development of deep learning, the field of HSI classification has also moved to the second stage. In
Hu et al.’s work11 , convolutional neural network(CNN) is empolyed to perform HSI classification in the spectral
domain. Chen et al.12 thoroughly explored the application of CNN in HSI classification, and proposed 3D-CNN
for HSI classification with spatial-spectral feature, which has a profound impact on subsequent research. Unlike
traditional machine learning methods that use the two-step process of first extracting features and then selecting
classifiers, most deep learning methods utilize end-to-end networks to directly obtain classification results. Most
obviously, the CNN method cuts the entire HSI into small patches containing only tens of pixels, resulting in
the loss of many non-local information.

Recently, deep learning on graph data has received rapid development and widespread attention. A novel
graph convolutional neural network(GCN)13 has also been tried for HSI classification. In the conventional
machine learning stage of HSI classification, there exist methods that treat HSIs as graph data and use graph
learning methods for classification. GCN is a graph representation learning algorithm that incorporates neural
networks, and is an attempt of deep learning on graph data. Unlike the CNN-based method that cuts HSI
into small patches containing tens of pixels, the GCN-based method performs semi-supervised classification of
graph nodes on the entire HSI. Such an operation enables the GCN-based method to make full use of non-local
information and pay attention to long-term dependencies. Qin et al.14 first applied GCN to HSI classification,
and specifically proposed a spatial-spectral GCN. Another representative work is Hong et al.15 . They compared
the classification performance of GCN and CNN, and proposed three strategies to combine GCN and CNN. Wan
et al.16 use superpixel segmentation as preprocessing, first segment the hyperspectral image into superpixels,
and then use GCN for classification, which increases the efficiency of the method.

Nevertheless, the existing GCN method still has two shortcomings. One is that it relies too much on prior
information to construct the graph structure, and the constructed graph structure cannot be changed during
training. Second, the accuracy of the GCN-based method is slightly insufficient compared with the mature CNN
method.

In this paper, we propose a spectral-spatial hypergraph convolutional neural network (S2HCN) for HSI clas-
sification. The hypergraph convolutional neural network (HCN)1718 is an extension of the GCN on hypergraph
structure. The proposed S2HCN first extract the hypergraph structure from the HSI using the spectral and
spatial features, and then input the extracted hypergraph structure and the original HSI into the HCN for train-
ing. Compared with the existing GCN-based methods, S2HCN has the following advantages. Different from
the adjacency matrix that is fixed during training of GCN, S2HCN can dynamically update the weight of the
hyperedge during training, which reduces the reliance on prior information to a certain extent. In addition,
S2HCN generates hyperedges from the spectral and spatial features independently, and adopts the incidence
matrix composed of all hyperedges to replace the adjacency matrix in GCN. In this way, the spectral and spatial
features can be better integrated. Finally, compared to a simple graph structure, the hypergraph structure can
express the high-dimensional relationships in the data. As a more powerful model, the hypergraph can extract
richer information, which is beneficial to classification problems.

2. METHODOLOGY

The overall architecture of S2HCN is shown in Fig. 1. We first extract the spatial-spectral features from the
original HSI, then construct the hypergraph structure, and finally send the HSI and the constructed hypergraph
structure into the designed HCN for learning. In this section, we first introduce hypergraph convolution, and
then present technical details of S2HCN.

2.1 Hypergraph Convolution

The difference between a hypergraph and a graph is that the hyperedges of the hypergraph are degree-free, while
the degree of the edges of the graph is fixed 2. That is to say, a hyperedge in a hypergraph can connect more than
two nodes, while an edge in a graph can only connect two nodes. A hypergraph is denoted as G = (V, E ,W),



Figure 1. Overview of the proposed S2HCN.

where V is the set of nodes, E is the set of hyperedges, and W is the hyperedge weight matrix. The incidence
matrix H is usually used to represent the hypergraph, and its definition is as follows,

h(v, e) =

{
1, if v ∈ e
0, if v /∈ e (1)

The Laplacian matrix L can be calculated from H as follows,

L = I−D−1/2v HWD−1e H>D−1/2v (2)

where Dv and De are the degree matrices of nodes and edges, respectively.

Hypergraph convolution is generalized from graph convolution. The definition of hypergraph convolution is
given in Feng et al.17 For a hypergraph data Xn×c1 with n nodes and c channels, the hypergraph convolution
acting on it can be expressed as,

Y = D−1/2v HWD−1e H>D−1/2v XΘ (3)

where Yn×c2 is the output, W = diag(w1, w2, ..., wn) and Θc1×c2 are the trainable parameters.

Therefore, the hypergraph convolutional layer with the activation function can be expressed as,

X(l+1) = σ
(
D−1/2v HWD−1e H>D−1/2v X(l)Θ(l)

)
(4)

where l is the lth layer, σ is the activation function.

2.2 S2HCN

In S2HCN , we first extract spatial-spectral features, and then combine the two features to construct a hypergraph.
For the spatial feature, we use the coordinates of the pixel as the feature, as follows,

Xspatial[i] = [h(i), v(i)] (5)

where h(i) and v(i) is the horizontal and vertical coordinates of pixel i. The spectral characteristics Xspectral

can be obtained directly from the original HSI. After obtaining the two features, we respectively generate the
corresponding hypergraph adjacency matrix Hspectral and Hspatial through Eq. 6.

h(i, j) =

{
e−σ‖xi−xj‖2/mean, if xi ∈ Nk (xj)
0, otherwise

(6)

where σ is a hyperparameter, mean is the average value of the Euclidean distance of all nodes v ∈ V.

Next, we splice the two incidence matrices Hspectral and Hspatial into a fused adjacency matrix Hfusion.
Then, we put the obtained incidence matrix Hfusion and the original HSI into the designed two-layer HCN for
training.



3. EXPERIMENTS

In this section, we conducted a variety of experiments on two representative datasets, including comparison ex-
periments of different methods, limited training samples classification experiments, and hyperparameter analysis
experiments.

3.1 Datasets

(1) Indain Pines

This dataset was photographed in northwestern Indiana. The size of the iamge is 145 × 145. It has 220
spectral bands. A total of 16 classes of land-covers are labeled for classication. The number of labeled samples
and training samples for each category is shown in Table 1. The pseudo-color image and ground-truth map is
shown in Fig. 2.

(2) Kennedy Space Center(KSC)

KSC dataset was taken in Florida, the size is 614 × 256. KSC contains 13 classes of land-covers and 176
spectral bands. The number of labeled samples and training samples for each category is shown in Table 1. The
pseudo-color image and ground-truth map is shown in Fig. 2.

Table 1. The number of training samples and test samples for each class of land-cover in Indian Pines.

Class No. Class Color Class Name Training Testing

1 Alfalfa 15 31
2 Corn Notill 50 1378
3 Corn Mintill 50 780
4 Corn 50 187
5 Grass Pasture 50 433
6 Grass Trees 50 680
7 Grass Pasture Mowed 15 13
8 Hay Windrowed 50 428
9 Oats 15 5
10 Soybean Notill 50 922
11 Soybean Mintill 50 2405
12 Soybean Clean 50 543
13 Wheat 50 155
14 Woods 50 1215
15 Buildings Grass Trees Drives 50 336
16 Stone Steel Towers 50 43

Total 695 9554

(a) (b)

Figure 2. Visualization of India Pines dataset. (a) Pseudo-color map. (b) Ground truth map.



Table 2. The Number Of Training Samples And Test Samples For Each Class Of Land-cover In Kennedy Space Center

Class No. Class Color Class Name Training Testing

1 Srub 30 728
2 Willow swamp 30 220
3 CP hammock 30 232
4 Slash pine 30 228
5 Oak/Broadleaf 30 146
6 Hardwood 30 207
7 Swamp 30 96
8 Graminoid 30 393
9 Spartina marsh 30 469
10 Cattail marsh 30 365
11 Salt marsh 30 378
12 Mud flats 30 454
13 Water 30 836

Total 390 4752

(a) (b)

Figure 3. Visualization of KSC dataset. (a) Pseudo-color map. (b) Ground truth map.

3.2 Experimental Settings

For S2HCN, we use the Adam optimizer19 , the initial learning rate is set to 0.01 and will be dynamically
updated, the hyperparameter σ is set to 1000, and the number of epochs is set to 200.

Simultaneously, we select four comparison methods, namely SVM with Gaussian kernel function, 2DCNN,
3DCNN20 , and Funet-M15 . Four evaluation indexes per-class accuracy, average accuracy, overall accuracy and
kappa coefficient were selected to compare the results.

3.3 Classification Result

The classification results of the two datasets are shown in Table 3 and Table 4. Figure 4 and Figure 5 are
visualizations of classification results. By analyzing the above tables and pictures, we can find that S2HCN has
the best performance on both datasets, which proves the effectiveness of our method. Meanwhile, as a relatively
mature CNN method, 3DCNN performs better than 2DCNN and SVM. Compared with Funet-M, another GCN
method that does not fuse spectral-spatial features, S2HCN also has obvious advantages, which also proves the
importance of spectral-spatial feature fusion.

4. CONCLUSION

In this paper, we propose a novel network S2HCN for HSI classification. S2HCN extracts spectral-spatial features
first, and then utilizes hypergraph convolutional network for training. It is worth noting that we specifically
propose the extraction method of spatial features, the generation method of hypergraph structure, and design a
two-layer hypergraph convolutional network. Sufficient experiments on two datasets demonstrate the validity of
S2HCN.



Table 3. Per-class accuracy, Overall accuracy(OA), Average accuracy(AA), and Kappa coefficient Acquired by Different
Method on Indian Pines dataset

Class No. SVM 2DCNN 3DCNN20 FuNet-M15 S2HCN

1 46.21 62.58 54.73 36.96 100.00
2 73.48 65.64 84.21 74.37 88.66
3 67.82 46.82 73.88 54.82 95.06
4 58.21 82.31 65.57 99.70 99.58
5 88.79 87.10 88.86 66.05 96.27
6 88.80 50.05 93.64 78.77 99.59
7 31.64 93.57 65.83 10.71 100.00
8 93.27 14.53 94.03 62.13 100.00
9 18.25 74.49 40.90 100.00 100.00
10 70.03 75.78 81.26 86.11 85.91
11 79.05 69.40 86.14 87.94 85.91
12 66.01 86.13 72.91 92.58 96.46
13 93.88 91.84 87.50 100.00 99.51
14 92.39 42.18 94.22 76.13 99.37
15 53.46 93.27 62.05 89.38 98.70
16 94.55 87.59 89.34 100.00 100.00

OA(%) 78.17 75.60 83.51 79.36 92.75
AA(%) 69.74 70.21 77.19 75.98 96.56
Kappa 0.7503 0.7214 0.8119 0.7612 0.9099

(a) gt (b) SVM (c) 2DCNN

(d) 3DCNN (e) FuNet-M (f) S2HCN

Figure 4. Visualization of the classification results of different methods on Indian Pines dataset. (a) gt. (b) SVM. (c)
2DCNN. (d) 3DCNN. (e) Funet-M. (f) S2HCN.



Table 4. Per-class accuracy, Overall accuracy(OA), Average accuracy(AA), and Kappa coefficient Acquired by Different
Method on KSC dataset

Class No. SVM 2DCNN 3DCNN20 FuNet-M15 S2HCN

1 92.53 96.78 96.93 96.98 100.00
2 86.64 89.91 89.70 71.60 88.07
3 74.61 73.05 83.45 100.00 100.00
4 36.64 52.75 55.45 66.27 59.92
5 41.07 32.61 12.07 75.16 81.89
6 55.50 67.44 80.41 90.83 100.00
7 71.01 80.81 89.73 100.00 100.00
8 83.59 94.56 92.48 95.59 99.53
9 92.29 98.30 97.39 92.69 93.85
10 94.40 96.61 99.30 99.75 100.00
11 97.53 99.07 99.60 100.00 100.00
12 88.71 96.03 97.67 77.14 100.00
13 100.00 100.00 100.00 100.00 100.00

OA(%) 86.67 90.45 91.58 92.11 96.30
AA(%) 78.04 82.92 84.17 89.70 94.10
Kappa 0.8508 0.8943 0.9061 0.9107 0.9498

(a) gt (b) SVM (c) 2DCNN

(d) 3DCNN (e) FuNet-M (f) S2HCN

Figure 5. Visualization of the classification results of different methods on KSC dataset. (a) gt. (b) SVM. (c) 2DCNN.
(d) 3DCNN. (e) Funet-M. (f) S2HCN.
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