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Abstract— Convolutional neural network obtains remarkable
achievements on target detection, due to its prominent capability
on feature extraction. However, it still needs further study for
aircraft detection task, since intraclass variation still restricts the
accuracy of aircraft detection in remote sensing images. In this
letter, we adopt regularity of aircraft circle response to design our
end-to-end fully convolutional network (FCN), and embed online
exemplar mining into our network to handle intraclass variation.
The mined exemplars are employed to capture different intraclass
characteristics, which effectively reduces the burden of network
training. Specifically, we first select basic exemplars based on
labeled information and initialize the relationships between
exemplars and aircraft examples. Then, these relationships will
be updated by the similarity of these examples in high-level
features space. Finally, aircraft examples will be used to train
different exemplar detectors according to updated relationships.
Motivated by the geometric shape of aircraft, a circle response
map is developed to construct our FCN to achieve more efficient
aircraft detection. The comparative experiments indicate that
superior performance of our network in accurate and efficient
aircraft detection.

Index Terms— Aircraft detection, exemplar mining, fully
convolutional network (FCN).

I. INTRODUCTION

A IRCRAFT detection is a representative task in remote
sensing images (RSIs) and has attracted increasing atten-

tion [1]–[9]. For a cross-shaped geometric structure of air-
crafts, a great amount of methods design handcrafted features
to accomplish aircraft detection. An et al. [2] utilized circle
frequency filter to locate the region of interest (RoI) and the
extracted histogram of gradients (HoGs) features to classify
the regions containing an aircraft. To regulate the dominant
orientation of a region and capture more detailed information,
Zhang et al. [3] designed a new rotation-invariant appearance
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Fig. 1. Aircraft examples with intraclass variation. Examples at right columns
show that intraclass variation is derived from aircraft type, rotation, and size.

feature called histogram of oriented gradients normalized
by polar angle. Zhao et al. [7] adopted aggregate channel
features (ACFs) to describe aircrafts in RSIs, which offered
richer representations and speeds up computations. However,
the handcrafted features always need to adjust the parameters
carefully and are not able to accurately handle target detection
task within various scales and rotations.

Recently, researchers introduce convolutional neural net-
work (CNN) into target detection in RSIs, because of its
powerful capability on features representation [10]. CNN is
mainly used in two strategies: 1) feature extractor [5], [6], [8]
and 2) an end-to-end unified network including feature extrac-
tion and target detection [4], [9], [11]–[13]. Compared with
the latter strategy, only using CNN as a feature extractor is
inefficient and cannot meet the requirement for rapid target
detection in RSIs. Moreover, the separation and asynchrony
between the feature extractor and the classifier will reduce
the effectiveness of the training process [14]. Therefore, much
more studies focus on the construction of an end-to-end unified
network.

The essential issue for constructing detection network is
how to address the aircraft intraclass variation that has adverse
effect on aircraft detection. Here, intraclass variation is defined
as differences among the same category targets and is harmful
for detection accuracy. These differences might be caused by
different imaging conditions or diversity of target itself and
obviously does not form coherent visual category, as shown
in Fig. 1.

To tackle the above-mentioned problems and promote the
network efficiency, we propose an online exemplar-based fully
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Fig. 2. Flowchart of proposed method. It consists of feature extraction
network, online exemplar-based region proposal network, and aircraft identi-
fication network. The dotted line indicates that the data are only delivered in
training process.

convolutional network (OE-FCN) in this letter. The proposed
method introduces an online exemplar-mining mechanism into
CNN and utilizes the exemplars to represent different intra-
class characteristics of aircrafts. In detail, metadata, including
scales and aspect ratios of labeled bounding boxes in each
minibatch, are separated into different groups. Each group
corresponds to a basic exemplar, and, thus, the relationships
between exemplars and aircraft examples are initialized by
these groups. To construct the final division of aircraft exam-
ples, high-level features of these examples in the same mini-
batch are also divided into different clusters. These clusters
will be used to update mappings from aircraft examples to
exemplars. The detectors in region proposal network will be
trained independently for each exemplar using its correspond-
ing examples. Moreover, based on the cross shape of the
aircrafts, we design a circle response map (CRM) to construct
our FCN.

The contributions of proposed network are three folds.
1) Our network removes the requirement for priors including
the size and aspect ratio of aircrafts. 2) Compared with
traditional exemplar mining, it is much more reliable, robust,
and extensible by combining high-level features and labeled
information. 3) With the design of the CRM, our network
achieves rapid and accurate aircraft detection in RSIs.

II. PROPOSED METHOD

A. Overview

As shown in Fig. 2, the proposed network consists of a
feature extraction network, an online exemplar-based region
proposal network (OE-RPN), and an aircraft identification
network. Feature extraction network is constructed based on
Resnet-50 [15]. We keep all convolutional layers and remove
the average pooling layer and fully connected layer. In addi-
tion, an extra convolutional layer is attached to reduce feature
dimension from 2048 to 1024. The feature map obtained from
the feature extraction network will be fed into the OE-RPN
and the aircraft identification network.

In the OE-RPN, we first augment labeled bounding boxes in
each minibatch for the diversity of training data and compute
the scales and aspect ratios of aircrafts based on these bound-
ing boxes. Then, the scale and aspect ratio of each aircraft

example will be concatenated into a 2-D labeled feature.
We will cluster all labeled features in a minibatch and use
the cluster centers to represent the aircraft exemplars. Thus,
all aircraft examples are separated into different exemplars
based on metadata. Besides, the OE-RPN also uses the high-
level features to group all aircraft examples and updates
the mapping between these positive examples and typical
exemplars. The losses of aircraft examples will be computed
by their assigned exemplar detectors and backward propagated
to update the network parameters in corresponding exemplars.
The OE-RPN finally collects all candidate regions extracted by
different exemplar detectors and outputs top N regions with
the highest scores to the aircraft identification network.

Aircraft identification network employs the high-level fea-
tures to construct a CRM, as shown in Fig. 3. The candidate
regions generated from the OE-RPN are projected to the CRM
and evaluated their scores. The region with higher score leads
a much greater probability of containing an aircraft target,
and vice versa. In this letter, a fully convolutional strategy
is adopted to design the OE-RPN and aircraft identification
network, and it improves the computational efficiency of our
network.

B. Online Exemplar Mining

To achieve exemplar mining, conventional methods group
positive examples into clusters based on the metadata [1], [11].
These clusters are used to represent mined exemplars. The
prerequisite for conventional approaches is that the intraclass
variation could be completely reflected on the metadata, and
all the difference of metadata should be paid attention to.
However, the intraclass variation really needed to be focused
is that leads great different features which cannot be cor-
rectly recognized by aircraft detectors. In this letter, both
metadata and high-level features are utilized to mine the
aircraft exemplars more effectively. A purely online form of
exemplar mining is embedded into our end-to-end FCN. Thus,
the exemplar mining is exactly as frequently as with the
network forward propagation; therefore, the CNN features are
made full use of without learning delay. Our online exemplar
mining (OEM) consists of two parts: metadata-based mining
and high-level feature-based mining.

1) Metadata-Based Mining: To promote the diversity of
exemplars mined from metadata, we first employ data aug-
mentation on the labeled bounding boxes according to the
constraint of intersection over union (IoU). Based on the
assumption that the IoU between augmented bounding box and
ground-truth box are greater than a desired IoU t , the scale and
aspect ratio of the bounding box can be adjusted, respectively,
to obtain a more diversified bounding box. Given a ground-
truth bounding box with scale sg and aspect ratio arg , we can
obtain the scale sa and aspect ratio ara of augmented bounding
box by {

sa |
√

t · sg ≤ sa ≤ sg√
t

}
(1){

ara |
(

2t

1+ t

)2

· arg ≤ ara ≤
(

1+ t

2t

)2

· arg

}
. (2)
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Then, we concatenate the scale and the aspect ratio of
augmented bounding box as a 2-D labeled feature. All these
features in each minibatch are allocated into different groups
by minibatch K-means algorithm [16]. The metadata of exem-
plars will be computed by labeled features in the same
group. Besides, the dependence between aircraft examples and
exemplars is constructed based on their metadata. In detail,
given the center coordinate of an aircraft as an example,
we utilize metadata of all exemplars to generate multiple can-
didate bounding boxes. The IoU values between the candidate
bounding boxes and the ground truth of this example are
calculated. This example will be assigned to the exemplar
whose candidate bounding box has the highest IoU with
ground truth.

2) High-Level Feature-Based Mining: In order to compen-
sate for the limited representability of metadata, high-level
features are also applied for exemplar mining. In our network,
the feature maps generated by feature extraction network
will be input into OE-RPN. The OE-RPN first selects the
positive CNN features from the feature map, then employs
clustering algorithm on these features to aggregate similar
features into the same group. Based on the groups in metadata
mining, the mapping from aircraft examples to exemplars is
supplemented by the sibling relationship between the positives
in high-level feature space, which constructs final divisions of
aircraft examples to achieve OEM.

Algorithm 1 shows the process of our OEM in detail.

C. Circle Response Map and Circle Pooling

For the cross shape of aircrafts and periodic intensities
changing around aircrafts, we develop a CRM to score the
candidate aircraft regions. As shown in Fig. 3, the scoring of
the CRM consists of two parts: a convolutional layer and a
circle pooling layer.

The convolutional layer has rn × αn × clsn convolutional
kernels. The input feature map is fed into this layer to produce
(rn×αn×clsn)×w×h circle response tensor. The rn×αn×clsn

channels in the circle response tensor represent different class
score maps in a specific radius and a central angle range,
respectively. The circle pooling layer cumulates the scores
from different channels and the sectors of circle response
tensor. First, we transform each RoI rectangle to an RoI
concentric circle with a radius rroi = max{wroi, hroi}/2. The
RoI circle is divided into rn × αn sectors, as shown in Fig. 3.
The range of radius and central angle for each sector limits in
rroi/rn and (2 · π)/αn , respectively. Then, we define a circle
pooling operation that pools the (ri , α j ) response tensor

sc(ri , α j | �)

= 1

n

∑
(r,α)∈Sec(i, j )

Fi, j,c(x0 + r cos α, y0 + r sin α | �). (3)

Here, sc(ri , α j | �) represents pooled response in the (i, j)th
sector for the aircraft or background. � is the learnable
parameters in convolutional layer. Fi, j,c denotes a score map
in (rn×αn×clsn)×w×h circle response tensor. (x0, y0) is the
center of an RoI. n is the number of sampling pixels in circle
response tensor. Sec(i, j) spans �i · (rroi/rn)� ≤ r < �(i + 1) ·

Algorithm 1 OEM
Input: In each iteration, ground-truth bounding boxes

Bg , high-level features F . Meta-data clusters cm ,
high-level feature clusters cn . M f is a index set
of positive examples in mini-batch.

Output: In each iteration, meta-data clusters cm ,
high-level feature clusters cn . Ge denotes all
groups in exemplar space.

1 compute scales and aspect ratios of Bg to construct the
labeled features Mg ;

2 Mg is augmented to obtain Ma using Eq.(1) and Eq.(2);
3 for y ∈ Ma do
4 allocate labeled feature into nearest meta-data center

by Km [y] ← arg mini‖y − ci
m‖2;

5 for y ∈ Ma do
6 k ← Km [y];
7 update meta-data center count vm [k] ← vm [k] + 1;
8 compute a gradient descent step on meta-data centers

ck
m ← (1− 1

vm [k] ) · ck
m + y

vm [k] ;
9 Gm ← ∅;

10 Gn ← ∅;
11 for x ∈ M f do
12 assign positives to meta-data centers by highest IoU

dm[x] ← arg maxi
area(Ci

m(x)∩Bg)

area(Ci
m(x)∪Bg)

;
13 d ← dm[x];
14 update meta-data groups Gm[d] ← Gm[d] ∪ {x};
15 allocate positive CNN features into nearest high-level

feature centers k ← arg mini‖F[x] − ci
n‖2;

16 update high-level feature groups
Gn[k] ← Gn[k] ∪ {x};

17 Kn[x] ← k;
18 Ge ← ∅;
19 for x ∈ M f do
20 k ← Kn[x];
21 update center count of high-level feature

vn[k] ← vn[k] + 1;
22 compute a gradient descent step on high-level feature

center, ck
n ← (1− 1

vn[k] ) · ck
n + F [x]

vn[k] ;
23 d ← dm[x];
24 update the clusters Ge in exemplars space

Ge[d] ← Gm[d] ∪ Gn[k];

Fig. 3. CRM and circle pooling layer. The channels with different colors in
CRM represent class score maps in a specific radius and central angle range.
Circle pooling layer cumulate scores from different channels and sectors
of CRM at proposal area.

(rroi/rn) and � j · (2 · π/αn)� ≤ α < �( j + 1) · (2 · π/αn).
Based on sc(ri , α j | �), we will vote the final scores by
averaging these pooled responses.
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III. EXPERIMENTS

A. Experiment Setup

We validated our proposed method on two data sets, namely,
RSOD data set [8] and a large-scale optical remote sens-
ing (LSORS) data set. The LSORS data set is collected
from Google Earth, including 97 different airports at a spatial
resolution of 0.6 m/pixel. There are 72 airport area images
using for training and validation, and the rest are used as
the test data set. The 72 large-scale RSIs are cropped into
7348 patches with 512 × 512 due to the limitation of GPU
memory, which contains 14577 aircrafts. These patches are
randomly divided into 70% for training and 30% for valida-
tion. The training set is augmented by rotating the patches
with different orientations. The size of image in test set is
above 5500 × 7000, and the entire airport image covers an
area of 13–87 km2. The number of aircrafts in test set is 2718.
For the RSOD data set, 70% images are used for training and
validation, rest are used for test. We adopted the same training-
validation split criterion with the LSORS data set.

For a fair comparison, we used three scales with box areas
of 322, 642, and 1282 pixels, and three aspect ratios of 0.5, 1,
and 2 to construct nine handcraft anchors for R-FCN [11]
and R-P-Faster R-CNN [9]. The number of clusters using in
K-means and OEM is also set to nine. The IoU t using in
metadata-based mining is set to 0.7. In addition, we set rn = 7,
αn = 7 which is equal to the number of spatial grids in the
position-sensitive RoI pooling layer [11]. All networks are
initialized by a pretraining model learned from natural images,
and then fine-tuned for 40k iterations with a momentum of 0.9,
a weight decay of 0.0005, and a learning rate of 0.001.

In our experiments, the aircraft detection is considered to
be correct if the IoU ratio between the detection box and the
ground-truth box exceeds 0.5. We employ the precision, recall,
and F1-measure to quantitatively evaluate the performance of
our OE-FCN method. These metrics are defined as follows:

Precision = TP

TP+ FP
, Recall = TP

TP+ FN

F1 −measure = 2 · Precision · Recall

Precision+ Recall
where TP, FP, and FN denote the number of true positives,
false positives, and false negatives, respectively. The experi-
ments were carried on the Ubuntu with an Intel(R) Core(TM)
i7-6800 K CPU @ 3.40 GHz and a NVIDIA GeForce GTX
1080 Ti GPU.

B. Verification on Exemplar Mining and
Circle Response Map

To evaluate the effectiveness of the OEM and the CRM,
we make comparison on R-FCN [11], R-FCN using CRM,
R-FCN with K-means anchors (KAs), R-FCN with OEM,
and our OE-FCN. In R-FCN using CRM, CRM substitutes
for position-sensitive score map. R-FCN with KA adopts
K-means clustering on the training set to configure the scales
and the aspect ratios of anchors. For R-FCN using OEM,
it replaces the handcraft anchors with the OEM, which com-
bines the metadata with high-level features to mine exemplars.
All comparisons are validated on the LSORS data set.

TABLE I

VERIFICATION OF EXEMPLAR MINING AND CRM

As shown in Table I, the R-FCN using handcraft anchors
have a worse performance than that using KAs or OEM,
since there is much more man-made interference caused
by handcraft anchors setting. By introducing the high-level
features into exemplar mining, both precision and recall are
boosted by 3% and 1% in R-FCN using OEM, respectively.
Actually, the anchor-based method can also be considered as
a special case of exemplar mining. Anchors are generated to
represent different exemplars only based on the statistics of
the scales and the aspect ratios of the targets bounding boxes
in the training set. However, the proposed method in this letter
combines the labeled information with the high-level features
of the targets to achieve more efficient exemplar mining
and improve the performance of network training. Besides,
comparing ours with the R-FCN using OEM, it proves that
using the CRM to identify aircraft candidate regions is more
accurate than the position-sensitive score map.

C. Comparison With the State-of-the-Arts

We compare the OE-FCN with two traditional state-of-the-
art aircraft detection methods and two CNN-based methods:
Adaboost using HoG [2], Adaboost using ACF [7], CNN with
unsupervised score based bounding box regression [8], and
R-P-Faster R-CNN with Visual Geometry Group-16 [9].

It can be shown from Table II and Fig. 4 that our method
can achieve high accuracy and recall simultaneously, which is
better than the other aircraft detection methods. Method [7]
has the worst precision than other methods, since the sliding-
window framework in [7] generates enormous spurious tar-
get regions and imposes a heavy burden on the classifier.
Compared with the CNN-based methods, these two traditional
methods perform poorly for the limited expressive capability
of handcraft features. The reason why [8] has a lower recall is
that the selective search method cannot extract plenty of air-
craft regions, and it causes a great quantity of miss detection.

To avoid missing any aircraft regions, method [9] develops
a region proposal network based on anchors principles. How-
ever, the anchor selection still relies on the prior information,
such as scales and aspect ratios, which is unrobust to the intr-
aclass variation of aircraft in RSI. Besides, the full-connected
layer in [9] dramatically slows down the speed of aircraft
detection. Instead of depending on the prior information of
aircrafts, the proposed method in this letter combines the
aircraft labeled information with the high-level features to
automatically mine exemplars that represent different intra-
class characteristics of aircrafts. In addition, it is also beneficial
to enhance the adaptability of our network. Moreover, the full
connection layer in aircraft identification is replaced by the
CRM to speed up the aircraft detection and achieve higher
accuracy.
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TABLE II

COMPARISON OF THE DIFFERENT AIRCRAFT DETECTION METHODS

Fig. 4. Detection results of different methods. The true positives, false positives, and ground-truths are indicated by red, blue, and green rectangles, respectively.
(a) [2]. (b) [7]. (c) [8]. (d) [9]. (e) Ours.

IV. CONCLUSION

In this letter, we have presented an end-to-end OE-FCN
framework to tackle the intraclass variation of aircraft and
achieve a rapid detection in RSIs. The online exemplar-mining
mechanism is introduced into the CNN, which adopts the
exemplars to represent different intraclass characteristics of
aircrafts. In addition, according to the cross shape of aircrafts,
the CRM is developed to construct our FCN. It accomplishes
an accurate and speed-up aircraft detection. The experiments
demonstrated that the OE-FCN framework could obtain an
outstanding performance on aircraft detection in large-scale
RSIs. In the future, we will further study an OEM based
on weakly supervised learning, since the manual annotation
in large-scale RSIs is generally expensive and unreliable for
small targets.
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