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Abstract— Single image super-resolution (SISR) is to recover
the high spatial resolution image from a single low spatial reso-
lution one, which is a useful procedure for many remote sensing
applications. Most previous convolutional neural network (CNN)-
based methods adopt supervised learning. However, paired high-
resolution and low-resolution remote sensing images are actually
hard to acquire for supervised learning SR methods. To handle
this problem, we propose a novel cycle convolutional neural
network (Cycle-CNN). Our network consists of two generative
CNNs for down-sampling and SR separately and can be trained
with unpaired data. We perform comprehensive experiments on
panchromatic and multispectral images of the GaoFen-2 satellite
and the UC Merced land use data set. Experimental results
indicate that our method achieves state-of-the-art CNN-based
SR results and is robust against noise and blur in remote sens-
ing images. Comprehensively considering super-resolved image
quality and time costs, our proposed method outperforms the
compared learning-based SISR approaches.

Index Terms— Convolutional neural network (CNN), nonpair-
wise training, remote sensing image, super-resolution (SR).

I. INTRODUCTION

THE spatial resolution of imaging sensors aboard earth-
observing satellites has been constantly improved [1] in

recent years; nevertheless, the resolution still cannot satisfy
the demand under certain circumstances. Physically increasing
the spatial resolution may reduce the incoming light and the
signal-to-noise ratio of the sensor, which causes the quality
of the final image to decrease sharply. Furthermore, the cost
of imaging sensors will increase greatly with the reduction of
physical pixels or the enlargement of the instantaneous field
of view (IFoV). Therefore, algorithmic-based methods are
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more appropriate because they can improve image resolution
beyond the limits of imaging sensors [2]. Super-resolution
(SR) is a classical problem in image processing to obtain
high-resolution (HR) images from low-resolution (LR) ones.
The purpose of SR is to improve the spatial resolution of
the LR images. Compared to LR images, the reconstructed
images can provide more graphic details, and have better
visual quality. Other than improving the perceptual quality,
SR also contributes to improving other computer vision
tasks, such as object detection [3], target recognition [4], and
image segmentation [5], [6]. Hence, SR is widely applied in
remote sensing field and promotes the development of the
applications of remote sensing [7].

According to the numbers of input images, SR methods
can be classified into two kinds, i.e., single image super-
resolution (SISR) [8] and multiple images super-resolution
(MISR) [9], [10]. Compared to MISR, SISR is more widely
used in remote sensing, because SISR is appropriate for most
kinds of imaging sensors beyond multiple images of the same
scene [11]. In this research, we focus on SISR for remote
sensing.

SISR is a classical ill-posed problem, since the solution
is not certain and unique. Previous SR methods are mainly
based on interpolation and reconstruction. Nearest, bilinear,
bicubic [12], and lanzcos3 resampling [13] are common inter-
polation methods. Methods based on reconstruction mainly
include iterative back-projection (IBP) [14], maximum a poste-
rior (MAP) [15], and projection onto convex sets (POCS) [16].
These methods constrain the reconstructed image through
a priori model. Currently, learning-based SR methods have
been proposed, such as methods based on sparse coding [17],
[18] and anchored neighborhood regression (ANR) [19]. Espe-
cially, with the development of convolutional neural networks
(CNNs), deep learning-based SR methods have become more
and more popular, e.g., SRCNN [20], VDSR [21], and SRRes-
Net [22]. It has been shown that deep learning-based methods
have a powerful ability to reconstruct LR images. Most of
the deep learning-based SR methods are trained by LR–HR
pairs, i.e., LR and HR images from the same area. However,
in practice, real LR–HR pairs are hard to acquire, because
a remote sensing sensor usually does not simultaneously
capture LR and HR images. Therefore, supervised methods
usually use down-sampled images from HR as LR to train the
network, e.g., bicubic down-sampling. Since real LR images
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may not be generated from HR by the specific down-sampling
way, the well-trained supervised network may not work well
when reconstructing real remote sensing images. Therefore,
creating a nonpairwise-trained network is essential and prac-
tically valuable for remote sensing image SR. In this article,
we propose a nonpairwise-trained network named Cycle-CNN
for remote sensing image SR. Our method can be trained
with unpaired remote sensing images. The whole pipeline
consists of two cycle modules. The first module is used to
map LR images to HR images, i.e., SR, while the second
module maps HR images back to LR images, like down-
sampling. We performed experiments using panchromatic and
multispectral images from the GaoFen-2 satellite. Experimen-
tal results show that our method outperforms other state-of-the-
art supervised methods for SR of real remote sensing images.
It should be noticed that this article is an extended version of
our contribution [23] previously represented in the 2019 IEEE
International Geoscience and Remote Sensing Symposium at
Yokohama, Japan.

The organization of the rest of this article is as follows.
Section II presents supervised SR methods and their limi-
tations in remote sensing, as well as a brief introduction to
unsupervised SR methods. Section III describes details of our
Cycle-CNN. Section IV shows experimental results to validate
the effectiveness and robustness. Conclusion is provided in
Section V.

II. RELATED WORKS

A. Supervised SR Methods and Their Limitations in Remote
Sensing

Most of the supervised learning-based SR methods aim to
solve the following problem [24]:

ẑ = arg min
z
‖z ↓s −x‖ + λ�(z) (1)

where x represents LR and z represents HR, s is down-
sampling model, and �(z) is the regularization term, and λ
is the trade-off parameter, most of supervised methods use
bicubic as a down-sampling model.

However, real LR remote sensing images are different from
natural images. Because the satellite is far from target and the
imaging system is under the influence of the atmosphere and
shake, the remote sensing images suffer from more blur and
noise than natural images and the degradation model is more
complex and hard to estimate. Furthermore, real LR–HR pairs
are hard to acquire. These lead training LR–HR pairs used
in learning-based SR approaches have quite deviation from
the real ones. As a result, the reconstructed images may not
meet expectations [25]. Therefore, the traditional supervised
learning-based SR methods are limited in the application of
reconstructing real remote sensing images [26].

B. Unsupervised SR Methods

In order to solve the shortcomings of supervised-based
SR methods, unsupervised SR reconstruction methods have
become a research hot spot in the field of SR. Previous
unsupervised methods are mainly based on reconstruction

(RE), e.g., IBP [14], MAP [15], [27], Gaussian process
regression (GPR) [28]. Methods based on reconstruction
constrain the reconstructed image through the prior image
model and the reconstruction process. The principle of
IBP is based on the inverse projection of the analog error,
minimizing the error of the super-resolved image through the
degraded model and the LR image. MAP applies Bayesian
theory, using prior knowledge in the form of prior probability
functions to solve the problem of SR. In the GPR method,
each pixel is predicted by its neighbors through the GPR.
These methods do not rely on training data and are robust to
noise and blur. However, the methods have limited ability to
reconstruct high-frequency details of the images [29].

In recent years, some studies focused on image self-
similarity-based unsupervised SR algorithms in which the
training process of the methods only uses LR images. The
fundamental of the methods is that images have strong internal
data repetition [30]. The methods try to search and extract
repetitive structures within the same scale and over different
scales, and train the reconstruction process by the extracted
LR/HR patches [31]. There are different ways to search the
patches and reconstruct the image. Huang et al. [32] proposed
SR from transformed self-exemplars (SelfEx). Their method
can extract image patches sufficiently by perspective distor-
tion and additional affine transformation. Shocher et al. [33]
introduced zero-shot SR (ZSSR). It evaluates the kernel
directly [34] from the test image, trains an image-specific
CNN to reconstruct the test image LR from its lower-resolution
version, and then applies the trained CNN to reconstruct the
desired HR output. Haut et al. [35] proposed a deep generative
network for unsupervised remote sensing image SR, which
used a 2-D-CNN architecture model to generate HR image,
and updated HR image iteratively by minimizing the mean
square error (MSE) loss between the down-sampled images of
the generated HR and real LR. Methods based on image self-
similarity have better reconstruction quality than RE; however,
the methods require a longer time because they need to train
a single network for each image during testing. Furthermore,
the SR results highly depend on the input image, so the
methods cannot perform well when the input image does not
have enough useful LR/HR connections. Because HR images
are not used for training, the details of the image are still not
well reconstructed.

To solve the disadvantages of the abovementioned
methods, recently, researchers paid more and more attention
to unsupervised learning-based SR methods using unpaired
LR–HR images. Generative adversarial net (GAN) [36] is
an effective model to solve the problem. Zhu et al. [37]
proposed CycleGAN, which made sense in solving unpaired
image-to-image translation problem. Inspired by CycleGAN,
Yuan et al. [38] proposed CinCGAN, using two CycleGANs
to reconstruct the images. The first one is noisy LR ↔ clean
LR, and the second is clean LR↔ clean HR. Bulat et al. [39]
trained the HR-to-LR degradation model by unpaired LR–HR
images and used the degradation model to generate LR images,
and then used the generated images and HR images to train the
SR network. In this work, we propose a learning-based SISR
model trained by unpaired LR–HR remote sensing images.
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Fig. 1. Architecture of our Cycle-CNN network. Our network consists of two generative CNNs for SR (G1) and down-sampling (G2) separately. LRx and
HRy are unpaired training data, HRx and LRy are their corresponding SR or down-sampling results, and LRx′ and HRy′ are the intermediate results of G2 and
G1. The numbers after k, n, and s in the convolution blocks represent the kernel size, the number of filters, and the stride size, respectively.

III. METHOD

A. Framework

The framework of our Cycle-CNN network is shown
in Fig. 1. There are two generative CNNs in our network: one
is used for image SR, and the other is used for image down-
sampling. The whole network consists of two generators G1

and G2. Starting with LR input, the CNN G1 for SR restores
the input LR image LRx to a HR image HRx, and then the
CNN G2 for down-sampling converts the HR image HRx back
to a LR image LRx′. LRx→HR x→LR x′ is the forward cycle.
Starting with the HR input, G2 down-samples the input HR
image HRy to a LR image LRy, and then G1 converts the LR
image LRy back to a HR image HRy′. HRy →LR y →HR y′ is
the backward cycle. The detailed architectures of G1 and G2

are shown in the bottom half of Fig. 1. It should be noticed that
the input HR image HRy in unpaired training is not the corre-
sponding ground truth HR of the input LR image LRx. There
is no direct relation between the unpaired LR–HR images in
the training procedure, as illustrated in Algorithm 1. LR or
HR input is trained in its own cycle, forward or backward.
Loss functions in Section III-B are designed to make our
Cycle-CNN to better recover the input image by alternately
using the generators G1 and G2. Therefore, although HR

data are used for unpaired training, such HR information may
not be regarded as supervision information for SR like other
supervised SR methods [20]–[22].

The structure of G1 refers to SRResNet [22]. Compared
to SRResNet, we remove the batch normalization layer [40],
which is proved to be not necessary in SR problems [41].
In addition, we adapt the 16 resblocks as the core struc-
ture of the network G1. One resblock consists of two con-
volution layers, a rectified linear unit (ReLU) layer [42],
and a pixel-wise addition layer. For the up-sampling layer,
the proposed method uses subpixel layers [43] for up-sampling
in G1.

The structure of the down-sampling CNN G2 is opposite
to G1, and it contains five resblocks. In addition, for G2,
in order to downscale the image, we use two 2 × 2-average-
pooling layers before resblock1. The following provides more
implementation details of our network.

1) Subpixel Layer: Subpixel layer is an end-to-end up-
sampling layer, which can up-sample the feature map by
generating a plurality of channels by convolution and reshap-
ing them. Assume that the size of the input feature map
is H × W × C and the up-sample scale is s. The feature
map is first convolved by a convolution kernel with a size
of C × k × k × s2C (k = 3 in our method), the output size
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is H × W × s2C , and then the output is reshaped to size
s H × sW × C by the method named shuffle [43].

2) Skip Connection: Skip connection is a common strategy
in SR tasks [21], [22], [41]. It can speed up convergence and
improve the reconstruction results. Our proposed method has
two kinds of skip connections. One is in resblock, connecting
the input and output of resblock. The other connects the input
of resblock1 and the output of the text convolution layer of
resblock16 (resblock5 in G2).

B. Losses of Cycle-CNN

Since we expect the cycle network to bring the generated
image back to the original one, we use the cycle consistency
loss. The consistency loss Lcyc is made up of forward consis-
tency loss L f

cyc and backward consistency loss Lb
cyc as

Lcyc = λ1 L f
cyc + λ2 Lb

cyc (2)

L f
cyc =

1

N

N∑
i=1

(∥∥G2
(
G1

(
LRxi

))−LR xi

∥∥
2

)
(3)

Lb
cyc =

1

N

N∑
i=1

(∥∥G1
(
G2

(
HRyi

))−HR yi

∥∥
2

)
(4)

where λ1 and λ2 are weights of consistency loss, (LRxi ,
HR yi)

are the unpaired LR/HR images, and i is the image index.
In the SR problem, Cycle-CNN needs the identity loss to

make sure the input and output image content of the generated
network (G1 and G2) is consistent. Furthermore, the identity
loss can make the network more stable and easy to converge.
There are two common losses used in the SR field: the
pixel-wise loss and the content loss [44]. For the pixel-wise
loss, we use L2 loss (i.e., MSE), and for the content loss,
we use VGG loss based on the ReLU activation layers of the
pretrained 19 layer VGG network [45]. The identity can act
on G1 or G2; therefore, the identity loss has four kinds of
forms, MSE-G1, MSE-G2, VGG-G1, and VGG-G2.

The MSE-G1 is calculated as

LMSE-G1
idt = 1

N

N∑
i=1

∥∥G1
(

HRyi ↓s
)−HR yi

∥∥
2 (5)

where s represents bicubic down-sampling, and HRyi ↓s is the
down-sampled result of HRyi . In addition, if we use paired
training for our Cycle-CNN (for comprehensive performance
comparison with supervised models in Section IV-D3),
i.e., HRxi represents the ground truth HR image of LRxi ,
the identity loss will change to

LMSE-G1-P
idt = 1

N

N∑
i=1

∥∥G1
(

LRxi
)−HR xi

∥∥
2. (6)

The MSE-G2 is calculated as

LMSE-G2
idt = 1

N

N∑
i=1

∥∥G2
(

HRyi
)−HR yi ↓s

∥∥
2. (7)

The VGG-G1 is calculated as

LVGG-G1/m,n
idt = 1

N

N∑
i=1

∥∥φm,n
(
G1

(
LRxi

))− φm,n
(

LRxi
)∥∥

2 (8)

where φm,n indicates the feature map of the nth convolution
(after activation) before the mth maxpooling layer within the
VGG19 network [22].

The VGG-G2 is calculated as

LVGG-G2/m,n
idt = 1

N

N∑
i=1

∥∥φm,n
(
G2

(
HRyi

))− φm,n
(

HRyi
)∥∥

2. (9)

The experimental results of different losses are presented in
Section IV-D.

The total loss of our Cycle-CNN is

L total = ω1 Lcyc + ω2 L idt (10)

where ω1 and ω2 are the weights for linear combination.

C. Training Details

Our goal is to train two generate functions G1 and G2. G1

estimates the HR images HR I from a given LR input LR I .
Relatively, for a given HR input image HR I , G2 estimates its
corresponding LR image LR I counterpart. Assume that the size
of LR I is H×W ×C and the scale factor is s, then the size of
HR I is s H × sW ×C . In our experiments, we only reconstruct
the luminance channel of remote sensing images, therefore the
value of C is 1. The parameters of G1 and G2 are θG1 and
θG2, respectively. In addition, to test the proposed model, only
G1 is used.

In our proposed method, we adapt unpaired LR/HR remote
sensing images to train the network. LRxi , i = 1, . . . , N are
unpaired LR training images and HRyi , i = 1, . . . , N are
unpaired HR training images. N is number of images in a
minibatch. The proposed training approach is summarized in
Algorithm 1.

Algorithm 1 Pseudocode of Training Cycle-CNN
Require: Unpaired LR/HR remote sensing training images

(LRxi ,
HR yi), i = 1, . . . , N

Goal The well-trained G1,G2

1: Initialize θG1, θG2

2: repeat
3: HRxi ← G1(

LRxi)
4: LRx′i ← G2(

HRxi)
5: L f

cyc ← M SE(LRxi ,
LR x′i)

6: LRyi ← G2(
HRyi)

7: HRy′i ← G1(
LRyi)

8: Lb
cyc ← M SE(HRyi ,

HR y′i )
9: Lcyc ← λ1 L f

cyc + λ2 Lb
cyc

10: HRydown
i ← G1(

HRyi ↓s)
11: L idt ← M SE(HRydown

i ,HR yi)
12: Ltotal ← ω1 Lcyc + ω2 L idt

13: ADAM-optimizer(Ltotal,variable= (θG1, θG2))
14: until Reach maximum iteration of minibatch updating
15:

16: function CYCLE-CNN-TEST(X L R)
17: X H R ← G1(X L R)
18: return X H R

19: end function
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Fig. 2. SR results of different loss functions. The first rows are results of bicubic down-sampled PAN images, and the second row shows the results of Y
channels converted by MS images.

Due to the memory limitation of GPUs, we crop 96 × 96
regions from 256 × 256 images as LR patches, and crop
384× 384 patches from 1024 × 1024 PAN images as HR
patches. The minibatch is 8. We train our model with
Adam optimizer [46] by setting the parameters β1 = 0.9,
β2 = 0.999, and ε = 10−8. The learning rate is initialized
as 10−4 and decreases by factor ten at half of the training
process. The iteration of minibatch updating is 1.8 × 105.
We set the consistency loss weights λ1 = 1, λ2 = 1 and
set the total loss weights ω1 = 2, ω2 = 1. We update the
parameters of G1 and G2 at the same time.

IV. EXPERIMENTS AND RESULTS

A. Experiment Configuration

Our experiments are carried out under the following soft-
ware and hardware conditions. The CNN-based methods in our
experiments, i.e., SRCNN [20], VDSR [21], SRResNet [22],
ZSSR [33], and our proposed method are performed in the
GPU environment. We implement other methods including
bicubic [12] and SelfEx [32] in the CPU environment.

1) GPU Environment: The GPU environment is with Inter
(R) Xeon (R) CPU E5-2630 V4 at 2.20 GHz and 16 GB
DDR4 RAM. We train and test the network on a NVIDIA
GeForce GTX 1080Ti with a memory of 11 GB. The operating
system is Linux Ubuntu 16.04.10 ×64. We implement our
models with TensorFlow1.9.0 framework. In addition, we use
CUDA9 for GPU calculation and TensorLayer API [47] for
the construction of our network models.

2) CPU Environment: The CPU environment is composed
of Intel (R) Core (TM) i7-8750H at 2.20 GHz CPU and DDR4
2666 RAM with a capacity of 8 GB. The operating system
is Windows10 ×64, the experiments are run on MATLAB
R2016a.

Our codes and data will be publicly available through our
website: https://github.com/haopzhang/CycleCNN.

B. Data Set

1) GaoFen-2 [48]: We collect 720 image pairs from
the GaoFen-2 satellite for experiments, including panchro-
matic (PAN) band images and the corresponding multispec-
tral (MS) band images. PAN images are regarded as HR
images with spatial resolution 1 m/pixel and size of 1024 ×
1024. The size of MS images is 256 × 256 and their spatial
resolution is 4 m/pixel. We convert the first three bands of
MS (i.e., the blue, green, and red channels) to YCbCr color
space, and regard Y channels as the LR images for unpaired
training [2]. Thus, the SR scale factor is 4. For supervised SR
networks, we down-sample PAN images to get LR images for
pairwise training. We randomly select three image pairs for
validation and five pairs for testing. The remaining 712 pairs
are used for training. Specifically, the testing set contains eight
images of spatial resolution 4 m/pixel, named ALL8. For a fair
comparison, five testing images are down-sampled from PAN
images (PAN5), and three of them are Y channels converted
by MS images (MS3). In addition, to analyze the robustness
against noise and blur, we also add Gaussian blur and Gaussian
white noise of standard deviation ten to the testing images.
Their corresponding five PAN images are used to calculate
the popular full-reference indexes PSNR and SSIM for SR
performance evaluation. It should be noticed that the PAN
and MS images were respectively captured by two different
cameras both aboard the GaoFen-2 satellite.

2) UC Merced [49]: UC Merced land use data set is an
extensive manually labeled ground truth data set. The data
set consists of images of 21 classes with a spatial resolution
of one foot. Each class contains 100 images with a size of
256 × 256 pixels. In the experiments, we use it to perform
a quantitative evaluation with comparison to unsupervised SR
methods. We select one image per class for testing. To make
experimental results comparable, we use the same testing
images as [35] in the following 12 classes: agricultural, agri-
cultural2, airplane, baseball, bridge, circular-farmland, harbor,
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Fig. 3. Training performance of different identity loss for down-sampled
PAN GaoFen-2 valid images. The index is average PSNR (dB)/-NIQE of
reconstructed bicubic down-sampled PAN GaoFen-2 valid images.

Fig. 4. Training performance of different identity loss for Y channels
converted by MS GaoFen-2 valid images. The index is average PSNR (dB)/-
NIQE of reconstructed Y channels converted by MS GaoFen-2 valid images.

industry, intersection, parking, residential, and road. It means
that 21 images are in our testing set while the results of 12 of
them are reported in this article. We also randomly select three
images per class for validation. The remaining 96 images per
class are used for training.

C. Evaluation Index

Peak signal-to-noise ratio (PSNR) is widely used to measure
the reconstruction quality. PSNR is defined via the maximum
possible pixel value (denote as L) and the mean squared
error (MSE) between images. L = 255 in most of our
experiments. Only in Table IV, L is the maximum pixel value
of single test image. Given the ground truth X and constructed
image XSR, and N is the total pixels of both of the images,
the MSE and the PSNR are defined as follows:

MSE = 1

N

N∑
i=1

‖X(i)− XSR(i)‖2 (11)

PSNR = 10 log10
L2

MSE
. (12)

The structural similarity index (SSIM) [50] is used for
measuring the structural similarity between images, based on

Fig. 5. Training performance of different weights proportion of consistency
loss(L f

cyc : Lb
cyc). The index is average PSNR (dB)/-NIQE of reconstructed

bicubic down-sampled PAN GaoFen-2 valid images.

Fig. 6. Training performance of different weights proportion of consistency
loss(L f

cyc : Lb
cyc). The index is average PSNR (dB)/-NIQE of reconstructed

Y channel converted by MS GaoFen-2 valid images.

three relatively independent comparisons, luminance, contrast,
and structure. For the ground truth X and constructed image
XSR, μX , σX represent the mean and the standard deviation of
X , μXSR , σXSR represent the mean and the standard deviation
of XSR, and σX XSR is the covariance between X and XSR. The
SSIM is defined as

SSIM(X, XSR) =
(
2μXμXSR + C1

)(
σX XSR + C2

)(
μX

2 + μXSR
2 + C1

)(
σX

2 + σXSR
2 + C1

)
(13)

where C1 = (k1L)2 and C2 = (k2 L)2 are constants for
avoiding instability.

Spectral angle mapper (SAM) [51] calculates the angle
between the spectra, and determines the similarity between
the two spectra. The smaller SAM means the two images are
more similar.

SAM(X, XSR) = 1

N

N∑
i=1

arccos
X(i)XSR(i)

‖X(i)‖‖XSR(i)‖ . (14)

Erreur relative globale adimensionnelle de synthese
(ERGAS) [52] evaluates the quality of all the bands of remote
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Fig. 7. Training performance of different weights proportion of consistency
loss(Lcyc : L idt). The index is average PSNR (dB)/-NIQE of reconstructed
bicubic down-sampled PAN GaoFen-2 valid images.

Fig. 8. Training performance of different weights proportion of consistency
loss(Lcyc : L idt). The index is average PSNR (dB)/-NIQE of reconstructed
Y channel converted by MS GaoFen-2 valid images.

sensing image. Its smaller value stands for better image
quality

ERGAS(X, XSR)

= 100
l

h

√√√√ 1

Nbands

Nbands∑
i=1

(
RMSE(X(i), XSR(i))

X(i)

)2

(15)

where Nbands represents the numbers of bands, and h and l
represent the resolution of HR and LR, respectively.

No-reference-based metrics have been proposed to predict
the image quality without ground truth. NIQE [53] is a popular
metric used for evaluating the image quality of SR. NIQE uses
three types of low-level statistical features in both spatial and
frequency domains to quantify SR artifacts, and learn a two-
stage regression model to calculate the scores of SR images.
The lower NIQE score means the better image quality.

D. Results and Discussion

1) Type of Identity Loss Functions: Table I and Fig. 2 show
the experimental results of different identity loss functions
of our Cycle-CNN method, and Figs. 3 and 4 present the

Fig. 9. Training performance of different CNN-based networks for down-
sampled PAN GaoFen-2 valid images. The index is average PSNR (dB)/-NIQE
of reconstructed bicubic down-sampled PAN GaoFen-2 valid images.

Fig. 10. Training performance of different CNN-based networks for Y
channels converted by MS GaoFen-2 valid images. The index is average PSNR
(dB)/-NIQE of reconstructed Y channels converted by MS GaoFen-2 valid
images.

training performance of four identity losses in reconstruct
bicubic down-sampled PAN GaoFen-2 valid images and Y
channel converted by the MS.

According to the experimental results, MSE-G1 and
MSE-G2 have much better performance than VGG-G1 and
VGG-G2. It indicates that VGG identity loss is not suitable
for our Cycle-CNN. VGG identity loss aims to make the
details of two images closer; however, the purpose of SR is
to restore the details of LR images. Comparing MSE-G1 and
MSE-G2, MSE-G1 has shown better results in the test data
set. It can be observed that the average PSNR of MSE-G1 is
higher than MSE-G2 by 0.14 dB and the average NIQE of
MSE-G1 is lower than MSE-G2 by 0.223. In conclusion,
we choose MSE-G1 as the identity loss in our method.

2) Weights of Loss Functions: In order to explore the
impact on different loss function weights in our method on
the super-resolved results, we design two groups of tests.
One is the different proportion of cycle consistency loss,
i.e., L f

cyc : Lb
cyc, whose weights are λ1 and λ2. The other is

different ω1 : ω2 values, representing Lcyc : L idt. Table II
and Figs. 5–8 show our experimental results. First, in terms
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Fig. 11. SR results of GaoFen-2. The first four rows are results of bicubic down-sampled PAN images, and the last three rows show the results of Y channels
converted by MS images. All pictures shown here are 200× 200 areas cropped from 1024 × 1024 reconstructed HR images.

of different λ1 : λ2, Fig. 5 shows that with the increase of
λ2, the performance becomes worse in reconstruct bicubic
down-sampled images. While Fig. 6 indicates that decreasing

specific value of λ1 : λ2 can improve the results of Y channels
converted by MS images. Second, regarding ω1 : ω2, Fig. 7
demonstrates that lower ω1 : ω2 value can bring better results
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Fig. 12. SR results of parking and road with a 4× scale factor on the UC Merced data set. In our method, we only reconstruct the luminance channel in
YCbCr color space by the network, while the Cb and Cr channels are reconstructed via bicubic interpolation.

TABLE I

COMPARISON BETWEEN DIFFERENT LOSS FUNCTIONS OF OUR METHODS. (PSNR (DB)/SSIM/NIQE). PAN5 REPRESENTS FIVE TESTING IMAGES
DOWN-SAMPLED FROM PAN IMAGES, AND MS3 ARE Y CHANNELS CONVERTED BYTHREE MS IMAGES. ALL8 MEANS ALL OF THE EIGHT

IMAGES OF SPATIAL RESOLUTION 4 M/PIXEL, I.E., PAN5+MS3

in super-resolved bicubic down-sampled images. Conversely,
when reconstructing Y channels, with the increase of ω1 : ω2

value, the reconstructed images have lower NIQE index, which
means higher image quality.

3) Comparison With State-of-the-Art Supervised SR Meth-
ods: Taking bicubic interpolation as the baseline, we compare
the proposed method with other state-of-the-art supervised
CNN-based SR methods such as SRCNN [20], VDSR [21],

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 09,2020 at 09:08:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE II

COMPARISON BETWEEN DIFFERENT LOSS FUNCTION WEIGHTS OF OUR METHODS. (PSNR (DB) /SSIM / NIQE). ω1 : ω2 IS THE PROPORTION OF LCYC

AND L IDT , AND λ1 : λ2 IS THE PROPORTION OF L f
CYC AND Lb

IDT . THE ABOVE PART SHOWS THE EXPERIMENT OF CONSISTENCY LOSS WEIGHTS

AND THE BELOW PART SHOWS THE EXPERIMENT OF TOTAL LOSS WEIGHTS. RED COLOR INDICATES THE BEST PERFORMANCE AND BLUE
COLOR REFERS THE SECOND BEST OF ALL THE WEIGHTS PROPORTION

TABLE III

COMPARISON BETWEEN OUR METHOD AND OTHER STATE-OF-THE-ART CNN-BASED METHODS. BICUBIC IS THE BASELINE. * REPRESENTS THAT THE

NETWORK USES UNPAIRED LR–HR FOR TRAINING. B DENOTES THAT THE LR TRAINING SET IS BICUBIC DOWN-SAMPLED FROM PAN IMAGES;
COMPARATIVELY, Y DENOTES THAT IT USES Y CHANNELS CONVERTED BY MS AS LR TRAINING SET. ALL THE METHODS ADOPT PAN

IMAGES AS HR TRAINING SET. PAN5 REPRESENTS FIVE TESTING IMAGES DOWN-SAMPLED FROM PAN IMAGES, AND MS3 ARE
Y CHANNELS CONVERTED BY THREE MS IMAGES. ALL8 MEANS ALL OF THE EIGHT IMAGES OF SPATIAL RESOLUTION

4 M/PIXEL, I.E., PAN5+MS3. RED COLOR INDICATES THE BEST PERFORMANCE AND BLUE COLOR REFERS THE

SECOND BEST

and SRResNet [22]. We individually train our Cycle-CNN
network and SRResNet (only G1 of our network) using
both paired and unpaired data for comprehensive performance
comparison.

Table III and Fig. 11 show the comparison results of our
method with other state-of-the-art SR methods, and Figs. 9
and 10 shows the performance of our SR module with different
training iterations. It can be seen that our Cycle-CNN can
achieve better results than state-of-the-art supervised methods,
and have better robustness against blur and noise. Particularly,
our pairwise-trained Cycle-CNN may get better SR results

for down-sampled PAN data, but worse for real Y channel
data. In contrast, our nonpairwise-trained Cycle-CNN has
better results in reconstructing Y channels. This validates
the role of nonpairwise training. It should be noticed that
for real remote sensing data with high degradation (i.e., blur
and noise in Table III), traditional bicubic interpolation may
perform better for×4 SR. It shows that image degradation may
affect learning-based SR methods a lot when the SR scale is
high. Furthermore, compared to only one generative network,
the Cycle-CNN structure increases the average PSNR by 0.19,
indicates that our Cycle-CNN is useful for constructing bicubic
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TABLE IV

COMPARISON BETWEEN OUR METHOD AND OTHER UNSUPERVISED
METHODS ON THE UC MERCED [49]. AVERAGE RESULTS

OF 12 IMAGES ARE REPORTED. RESULTS WITH 
 ARE

REFERRED FROM [35]

down-sampled remote sensing images. Since supervised CNN-
based networks are designed for using paired images to train,
the super-resolved results provided by supervised methods
perform poorly when the training data are unpaired or are not
matched strictly, such as paired Y-PAN. Our method can be
applied to paired or unpaired training data and achieves good
reconstruction results for both bicubic down-sampled images
and real remote sensing images.

4) Comparison With State-of-the-Art Unsupervised SR
Methods: Table IV shows the comparison results with
other unsupervised methods. It can be seen that except
bicubic, our method spends the least time in reconstructing
images. Methods based on image iteration such as [28]
and [35] averagely consume more than 100 s to complete
the reconstruction process. Other methods such as ZSSR [33]
and SelfEx [32] also consume more than 10s because they
need extracting features and training on input images. On the
other hand, Haut et al. [35] obtained the best PSNR result as
25.21 and the best ERGAS result as 4.193 on the UC Merced
data set, while our nonpairwise-trained method achieves the
best SSIM value 0.7456 and SAM value 0.0231.

Fig. 12 shows the SR results of “parking” and “road” in
the UC Merced data set. In Fig. 12, we can be observed that
our method can obtain sharper edges and richer details, such
as the parking line and the glasses on the car. In addition,
the super-resolved images of our method have better clearness
and visualization than other state-of-the-art unsupervised SR
methods. In image “road,” Haut et al. [35] achieved the highest
PSNR and the best-reconstructed quality for lines in the road,
whereas our method can also restore the edges of lines.
According to the results, we can conclude that considering
the trade-off between super-resolved image quality and time
costs, our proposed method has obvious advantages compared
to unsupervised SR approaches shown in Table IV.

V. CONCLUSION

In this article, we have proposed a nonpairwise-trained SR
network named Cycle-CNN for remote sensing images. We set
two modules in our network. The first module is used to map
LR images to HR images, i.e., SR, while the second module
maps HR images back to LR images, like down-sampling.
According to the comparison of four types of identity loss
and nine kinds of weights proportions, we can conclude that
MSE-G1 is the best identity loss. Experimental results on

GaoFen-2 satellite images demonstrate that our proposed
method achieves state-of-the-art SISR results and good
robustness against blur and noise. Furthermore, our proposed
method performs better while reconstructing multispectral
band images of real remote sensing satellites. Tests on the
UC Merced data set demonstrate that our proposed method
can achieve a better trade-off between super-resolved image
quality and time costs than that of the learning-based SISR
approaches.
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